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Abstract

A Maslov index for a solitary wave can be defined by approximating the solitary wave with periodic waves: when
a sequence of periodic waves φα converges to the solitary wave φ, then the sequence of Maslov indices converges
and its limit can be used as a definition for the Maslov index of φ.
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Résumé

Un indice de Maslov pour les ondes solitaires obtenu comme limite de l’indice de Maslov pour les
ondes périodiques. On peut définir l’indice de Maslov pour une onde solitaire en approchant l’onde solitaire
par des ondes périodiques : lorsqu’une suite d’ondes périodiques φα converge vers l’onde solitaire φ, alors sa limite
peut-être utilisée comme définition de l’indice de Maslov de φ.
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Version française abrégée L’indice de Maslov est un entier attribué à des orbites de systèmes hamilto-
niens. Il est utilisé dans de nombreux domaines comme la mécanique quantique [2] ou la détermination
de la stabilité des ondes solitaires [8,3].

C’est ce dernier domaine que vise cette note. Pour certaines équations aux dérivées partielles 1D, une
onde φ se propageant sans se déformer vérifie une équation hamiltonienne de type :

Jux = ∇uH H : R2n → R (1)
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La recherche des valeurs propres de la linéarisation d’une EDP autour d’une onde φ, ou de la hessienne
du Hamiltonien d’une EDP, conduit à résoudre des problèmes du type :

Jzx = C(x, λ)z , z ∈ R2n , λ ∈ R , (2)

avec C(x, λ) symétrique et lim|x|→∞−JC(x, λ) = B∞(λ) et C(x, 0) = D2Hφ(x).
Le comptage des solutions bornées de ce type de systèmes conduit à considérer la variété Λn des espaces

lagrangiens (Un espace V est dit lagrangien s’il est de dimension n et si ∀(u, v) ∈ V2 tuJv = 0), dont le
groupe fondamental est Z. On peut donc associer un entier à tout chemin fermé de cette variété, appelé
indice de Maslov.

Dans le cas où φ est une onde périodique, il est possible de définir un indice de Maslov en λ dans les
cas suivants :

– Si pour un λ donné, le système n’a pas de solution bornée, alors l’espace des solutions tendant vers 0
en −∞ forme un chemin fermé dans Λn sur une période. L’indice de Maslov de l’onde en λ est alors
défini comme l’indice de Maslov de ce chemin et noté Iper(φ, λ).

– Si λ = 0 et si l’espace des solutions R de (2) tendant vers 0 en −∞ est de dimension n − 1, alors
Rφx⊕R forme un chemin fermé dans Λn sur une période. L’indice de Maslov de l’onde en λ = 0 est
alors défini comme l’indice de Maslov de ce chemin, et noté Iper(φ).

On cherche à étendre ces définitions aux ondes solitaires. On approche donc une onde solitaire φ par
des ondes périodiques φα, de période 2π

α . On peut alors faire tendre α vers 0 et obtenir ainsi un indice
de Maslov pour φ pour différentes valeurs de λ. On définit h(α) = H(φα) et on suppose que ∂C

∂λ est une
matrice symétrique positive. Moyennant certaines hypothèses, on peut alors prouver que les limites de
Iper(φα, λ) et Iper(φα) lorsque α→ 0 sont respectivement :

– l’indice de Maslov de l’espace des solutions de (2) tendant vers 0 en −∞ lorsqu’il forme un lacet sur
R. On note alors Ihom(λ) cette quantité.

–


lim
λ→0+

Ihom(λ) si h′ < 0

lim
λ→0−

Ihom(λ) si h′ > 0
dans le cas où l’ensemble des solutions L2(R) est réduit à Rφx.

On obtient ainsi un indice de Maslov pour les ondes solitaires. Des applications de cette construction
seront rapportées dans [4].

1. Introduction

The Maslov index is an integer associated to orbits of Hamiltonian systems that is used in a wide range
of physical applications: semi-classical quantization, quantum chaology, classical mechanics [2], etc... It
is also used as a counter of eigenvalues for some self-adjoint operators in [8,3] to determine the stability
of travelling waves of Schrödinger or Fitzhugh-Nagumo equations. There, the Maslov index is defined
directly on the solitary waves using the intersection number of paths in the Lagrangian Grassmannian.

Unfortunately determining intersections can be uneasy. Therefore, an other definition for the Maslov
index is desirable.

In this paper a new definition of Maslov index for a solitary wave is given, when the solitary wave is
obtained as a limit of periodic waves, by using the classical definition of Maslov index for periodic orbits,
taking limits, and proving that the index converges.

A 1D traveling wave φ is often a solution of an autonomous non-linear Hamiltonian system:

Jux = ∇uH H : R2n → R (3)
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Stability of traveling waves has been linked to the spectrum of the second variation of the Hamiltonian
(see [6,4]). Tracking the eigenvalues λ of the linearization of some PDE, or of the second variation of a
Hamiltonian of a PDE near a travelling wave can lead to a Hamiltonian system in the form:

zx = B(x, λ)z , B(x, λ) = −JC(x, λ) , J =

0 −I

I 0

 , z ∈ R2n (4)

where C(x, λ) is a symmetric matrix which usually satisfies:

C(x, 0) = D2Hφ(x). (5)

The latter formula means that, for λ = 0, system (4) is the linearization of system (3).
An n−dimensional subspace, span{u1, . . . ,un} ⊂ R2n, is a Lagrangian subspace if 〈Jui,uj〉 = 0 for

each ui,uj . The set of all Lagrangian subspaces is a compact manifold of dimension 1
2n(n + 1) and is

denoted by Λn. A point W in Λn can be represented by a 2n× n matrix W, where W is of rank n and
satisfies WTJW = 0. Lagrangian subspaces are invariant under the flow of (4). Hence, W(x, λ) satisfying

JWx = C(x, λ)W , W(x0, λ)TJW(x0, λ) = 0 , W(x0, λ) has rank n, x ≥ x0 , (6)

defines a path of Lagrangian subspaces, since d
dxW(x, λ)TJW(x, λ) = 0 and so W(x, λ)TJW(x, λ) =

W(x0, λ)TJW(x0, λ) = 0.
Given a path of Lagrangian subspaces, define the Maslov angle κ(x, λ) by

eiκ(x,λ) = s(W(·, λ)) =
det(D1(x, λ)− iD2(x, λ))
det(D1(x, λ) + iD2(x, λ))

, W(x, λ) =

D1(x, λ)

D2(x, λ)

 . (7)

It can be noticed that s(AP) = s(A) for any invertible n× n-matrix P and therefore s is independent of
the choice of W among representatives of W. Moreover s is a continuous function over Λn (see [2]).

When this path is closed in Λn, i.e. when there exists a n×n matrix P such that W(x0, λ) = W(x1, λ)P,
then the Maslov index is an integer defined by

m(W(·, λ)) =
κ(x1, λ)− κ(x0, λ)

2π
. (8)

This index m is well-defined for any closed path in Λn and gives a one-to-one correspondence between Z
and homotopy classes of closed paths in Λn (see [2]).

Defining a Maslov index for a linear Hamiltonian system can be done by choosing a Lagrangian plane
of solutions and an x−interval on which it is closed.
Definition 1 The unstable space U(·, λ) of system (4) is defined as the set of solutions of (4) which decay
to 0 exponentially at −∞ (Its dimension may vary with λ).

2. Maslov index for hyperbolic periodic waves.

Suppose that the studied wave is L-periodic. Then, C(x, λ) is L-periodic with respect to x. When
dim(U(·, λ)) ∈ {n− 1, n}, there are two cases when a Maslov index can be defined:
– The unstable space U(·, λ) is a n-dimensional space. The periodic system is said to be strictly hyperbolic.

Definition 2 When U(·, λ) is a n-dimensional space, the Maslov index at λ of system (4) is defined
as m(U(·, λ)), where U(·, λ) is taken over [0, L].
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– The L-periodic travelling wave φ is a solution of (3) and the linear system (4) at λ = 0 is the linearization
of system (3). φx is then a solution of the linear system at λ = 0 and therefore, U(·, 0) is not n-
dimensional. However, if it is n− 1-dimensional, the following definition can be used:
Definition 3 If the dimension of the space R(x) = U(x, 0) of solutions of Jzx = D2Hφz decaying to
0 at −∞ is n− 1, then (Rφx⊕R)|[0,L] is a closed path over one period in the Lagrangian manifold and
the Maslov index of φ at 0 is defined as Iper(φ) = m((Rφx ⊕R)|[0,L]).

3. General hypotheses made on the solitary wave.

We suppose now that φ is a solitary wave. Naturally, the two previous definitions will require a separate
treatment in order to be extended. However, these two cases share common hypotheses:
Hypothesis 4 – B(x, λ) is a smooth function with respect to x and analytic with respect to λ.
– There exists B∞(λ), γ > 0 and F > 0 such that ∀x, λ ‖B(x, λ)−B∞(λ)‖ ≤ Fe−γ|x|.
– There is an open set X of real numbers, such that for each λ ∈ X, Sp(B∞(λ)) ∩ iR = ∅.
– The set σp = {λ ∈ X|System (4) admits a non-trivial bounded solution} is a strict subset of X.

Then we can write: R2n = Eu(B∞(λ)) ⊕ Es(B∞(λ)) where Eu(B∞(λ)) (resp. Es(B∞(λ))) is the
unstable (resp. stable) space of B∞(λ), i.e. sum of generalized eigenspaces associated to eigenvalues with
strictly positive (resp. negative) real part. Since JB∞(λ) is symmetric, dimEu(B∞(λ)) = dimEs(B∞(λ)).
Therefore Eu(B∞(λ)) and Es(B∞(λ)) have the same dimension: n.

Moreover, U(x, λ) has dimension n, is Lagrangian and limx→−∞ U(x, λ) = Eu(B∞(λ)). Symmetrically,
the set of solutions that decay as x→ +∞, which is called the stable space S(x, λ), which is Lagrangian
and limx→+∞ S(x, λ) = Es(B∞(λ)).

As we wish to define the Maslov index as a limit of the periodic case, we will also suppose that there
is a family of periodic waves φα which approaches the solitary wave φ. More precisely, consider a family
of systems parametrized by α ∈ [0, α0]:

Jzx = Cα(x, λ)z (9)
We suppose that:
Hypothesis 5 – Cα(x, λ) is a smooth function with respect to x and α, and analytic with respect to λ

and C0(x, λ) = C(x, λ).
– Cα(·, λ) is Lα-periodic when α > 0 and limα→0+ Lα = +∞.
– ∀M > 0 limα→0 supx∈[−Lα2 ,Lα2 ],λ∈X,|λ|<M ‖C

α(x, λ)−C(x, λ)‖ = 0.

4. Maslov index for solitary waves when λ ∈ X− σp .

In this section, we will extend definition 2 and suppose that λ ∈ X− σp.
By hypothesis, the space of solutions decaying both at −∞ and +∞ is reduced to {0}.
Then limx→+∞ U(x, λ) = Eu(B∞(λ)) (lemma 3.7 in [1]).
Therefore, x 7→ U(x, λ) is a closed path in Λn over R for each λ ∈ X− σp.
The quantity m(U(·, λ)) is therefore well defined. Let us now show that it is the limit 1 of m(Uα(·, λ))

when α→ 0.
Let d(·, ·) be a metric on Λn compatible with its compact manifold structure (It can be obtained by

embedding Λn in RN ).

1 Of course, as m is an integer-valued function, it means that m(Uα(·, λ)) is equal to m(U(·, λ)) for small enough α.
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Now, use lemma 2.11 p.172 of Gardner [7]:
Theorem 6 (Gardner) If hypotheses 4,5 are satisfied, let λ ∈ X − σp. Then, for α small enough, the
space Uα(·, λ) of solutions of (9) decaying at −∞ is n-dimensional and converges x-uniformly to U(·, λ):

lim
α→0

sup
x∈[−Lα2 ,Lα2 ]

d(Uα(x, λ),U(x, λ)) = 0 . (10)

Corollary 4.1 Let λ ∈ X− σp. For α small, Iper(φα, λ) is well-defined and equal to m(Uα(·, λ)).
Corollary 4.2 limα→0 supx/∈[−Lα2 ,Lα2 ] d(Uα(Lα2 , λ),U(x, λ)) = 0.

Proof.
d(Uα(Lα2 , λ),U(x, λ)) ≤ d(Uα(Lα2 , λ),U(Lα2 , λ)) + d(U(Lα2 , λ), Eu(B∞(λ))) + d(Eu(B∞(λ)),U(x, λ)).
Using lim|x|→∞ U(x, λ) = Eu(B∞(λ)), corollary 4.2 is immediate.

Now define: Vα(x, λ) =


Uα(x, λ) if x ∈ [−Lα

2
,
Lα
2

]

Uα(
Lα
2
, λ) if x /∈ [−Lα

2
,
Lα
2

]
.

From (10) and corollary 4.2, we get: limα→0 supx∈R d(Vα(x, λ),U(x, λ)) = 0.
Λn is compact and therefore s is uniformly continuous over it and consequently:

lim
α→0

sup
x∈R
|s(Vα(x, λ))− s(U(x, λ))| = 0 .

Hence, if κ and κα are angles associated to U and Vα, then

lim
α→0

sup
x∈R
|κα(x, λ)− κα(0)− κ(x, λ) + κ(0)| = 0.

Therefore:

lim
α→0
|m(U(·, λ))−m(Vα(·, λ))| = lim

α→0

∣∣∣∣ lim
x→∞

κ(x, λ)− lim
x→−∞

κ(x, λ)− lim
x→∞

κα(x, λ) + lim
x→∞

κα(x, λ)
∣∣∣∣ = 0.

This proves that the limit of Iper(φα, λ) = m(Vα(·, λ)) = m(Uα(·, λ)) as α→ 0 exists. This limit is the
basis for our definition of Maslov index:
Definition 7 The Maslov index of system (4) for λ ∈ X− σp is defined as Ihom(φ, λ) = m(U(·, λ)).

5. Defining a Maslov index for solitary waves when the system is also the linearization of
an autonomous system (λ = 0).

Using equations (3)-(5), it is easy to see that φx is a solution of system (4) at λ = 0 and therefore
0 ∈ σp. To extend definition 3, make the following additional hypothesis:
Hypothesis 8 – There is a unique family of Lα-periodic waves φα solutions of (3) such that φα con-

verges to φ and Cα(x, 0) = D2Hφα(x).
– The functions h(α) = H(φα) and l(α) = Lα are differentiable and in ]0, α0[, we have h′ 6= 0, l′ < 0.
– ∂λCα(·, λ) is positive 2 in the sense of symmetric matrices.
– 0 ∈ X and the space of bounded solutions of the linear system (4) at λ = 0 is equal to Rφx.
– For small enough α, Mα(0) has only two eigenvalues at +1, the others being off the unit circle.

Let Mα(λ) be the matrix such that z(Lα) = Mα(λ)z(0) for any z solution of Jzx = Cα(x, λ)z.
For small enough α, Mα(0) has only two eigenvalues at +1, the others being off the unit circle. Therefore,

Rα = Uα(·, 0) has dimension n− 1 and Iper(φα) is well-defined.

2 The case ∂λC
α(·, λ) negative can be handled similarly, by replacing λ by −λ.
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Negative Krein
signature.

λ<0 λ>0

signature.
Positive Krein

λ<0 λ>0

h ’ < 0.

λ=0

h ’ > 0.

λ=0

Figure 1. Position of the two critical eigenvalues of Mα(λ) in the case where λ is close to 0 and ∂λC
α(·, ·) is positive.

Let first assume that h′(α) > 0. Then there exists a basis (x, y) of E1(Mα(0)) and γ > 0 such that

tyJx = 1 and

1 γ

0 1

 is the matrix of Mα(0)|E1(Mα(0)) in (x, y).

For λ near 0+, there is one pair of eigenvalues of Mα(λ) on the unit circle, the upper eigenvalue having
a positive Krein sign 3 . For λ near 0−, all the eigenvalues of Mα(0) are off the unit circle, the unstable
space Uα(·, λ) has dimension n and limλ→0− Uα(·, λ) = Rφαx ⊕Rα, x-uniformly.

If h′(α) < 0, then the sign of γ and the Krein sign are reversed, and the two critical eigenvalues are on
the unit circle when λ is close to 0− and limλ→0+ Uα(·, λ) = Rφαx ⊕Rα, x-uniformly.

Therefore, for small enough α, the Maslov index of φα is Iper(φα) =


lim
λ→0−

Iper(φα, λ) if h′(α) > 0

lim
λ→0+

Iper(φα, λ) if h′(α) < 0
.

Therefore, we define the Maslov index of the soliton φ as Ihom(φ) =


lim
λ→0−

Ihom(φ, λ) if h′|]0,α0[
> 0

lim
λ→0+

Ihom(φ, λ) if h′|]0,α0[
< 0

.

Conclusion. A natural extension of the Maslov index when λ ∈ X− σp has been provided. Besides, by
defining a Maslov index at λ = 0, the pure ODE problem (3) has been linked to the spectral problem (4).
This index is of interest for the stability analysis of waves (see [4] for applications).
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