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1. Introduction

Homoclinic orbits are important in Hamiltonian dynamical systems. They can be
organizing centres for chaos, and in the case where they are steady-state solutions
of an evolutionary PDE they represent localized solutions such as solitary waves.
Of interest in this paper are multi-pulse homoclinic orbits.

A multi-pulse homoclinic orbit is firstly a homoclinic orbit. The “multi-pulse”
nature indicates multiple maxima and minima in the graph of the function. An
important open question is how to distinguish between two multi-pulse homoclinic
orbits. A universal classification of multi-pulse homoclinic orbits has yet to emerge.
However, for a class of autonomous Hamiltonian systems on R

4, Buffoni, Champ-

neys & Toland (1996) have introduced a precise classification based on a sequence
of integers. Multi-pulse homoclinic orbits are labelled by n(ℓ1, . . . , ℓn−1) where n

is the modality (the number of major local extrema) and ℓ1, . . . , ℓn−1 are related
to the number of minor bumps between consecutive extrema. A precise definition
is given in Buffoni et al. (1996). Hereafter this classification is called the BCT
classification.

An important topological invariant of any orbit of a Hamltonian system is the
Maslov index. A precise definition of Maslov index in this context is given in §2.
We have found that the Maslov index of a homoclinic orbit is encoded in the BCT
classification:

Maslovhomoclinic = neven + 2nodd + 2 , (1.1)

where neven (nodd) is the number of even (odd) integers in the sequence ℓ1, . . . , ℓn−1.
This observation is numerical. The results are obtained by explicit computation
using a new numerical algorithm for computing the Maslov index.

The class of Hamiltonian systems of interest is steady solutions of the PDE

φt = −φxxxx − Pφxx − φ+ φ2 , (1.2)
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where P is a real parameter. Steady solutions are orbits of the ODE

φxxxx + Pφxx + φ− φ2 = 0 . (1.3)

This ODE has been extensively studied because of its importance in pattern forma-
tion. It is called the canonical equation in the book by Peletier & Troy (2001),
and it is the ODE that forms the basis of the theory of Buffoni et al. (1996).
The ODE (1.3) can be characterized as a Hamiltonian system and the formulation
used here is recorded in Appendix A.

The PDE (1.2) arises in many applications: beam buckling, pattern forma-
tion – where it is called the one-dimensional Swift-Hohenberg equation (Burke

& Knobloch 2007), thin film flows, and a variant (an additional space derivative
is added to the right-hand side) arises in the theory of capillary-gravity water waves,
called the fifth-order KdV equation. A review of equations of this type is given by
Champneys (1999).

The linearization of (1.2) about a multi-pulse solution φ̂(x) satisfying (1.3) and
taking exponential in time solutions φ(x, t) 7→ e−λtφ(x) leads to the linear ODE

φxxxx + Pφxx + φ− 2φ̂(x)φ = λφ . (1.4)

This ODE can be reformulated as a standard linear Hamiltonian system on R
4,

Jux = B(x, λ)u , u ∈ R
4 , (1.5)

where B(x, λ) is a symmetric matrix depending smoothly on x and λ with the
property that

lim
x→±∞

B(x, λ) = B∞(λ) , (1.6)

and

J =

[
0 −I

I 0

]
. (1.7)

The matrix B(x, λ) is defined in Appendix A in equation (A 2).
The parameter λ serves two purposes. It is a stability exponent for the PDE,

but it is also a device for assuring genericity (see §2a for discussion). We will be
primarily interesting in the limit λ→ 0.

The Maslov index is most familiar in the literature in the context of closed orbits,
e.g. the case of (1.5) with periodic coefficients, because of its importance in semi-
classical quantization (cf. Arnold (1967), Littlejohn (1986), Littlejohn &

Robbins (1987), Robbins (1991), Pletyukhov & Brack (2003) and references
therein). The Maslov index of homoclinic orbits was first introduced by Jones

(1988) and Bose & Jones (1995) for 1−pulse homoclinic orbits. We turn this
definition into a computable formula by introducing an explicit intersection form,
following Robbins (1991,1992) and Robbin & Salamon (1993). Chen & Hu

(2007) have recently introduced a formulation of the Maslov index for homoclinic
orbits. They give two constructions. The first is based on an intersection index and
therefore is a generalization of the Bose-Jones definition. Their second definition
is based on a relative Morse index of (1.5) considered as an operator on the real
line. It is the intersection index formulation that is most useful for numerics.
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The Maslov index for a homoclinic orbit can also be defined by approximating
the homoclinic orbit by a periodic orbit and then taking the limit as the period of
the orbit goes to infinity. The existence of this Maslov index was recently proved
in Chardard (2007). Both definitions are used in the numerical computation in
order to double check the results.

The paper has three parts: derivation of a computable formula for the Maslov
index, a numerical algorithm on exterior algebra spaces for computing the Maslov
index, and results for multi-pulse orbits of (1.3).

2. The Maslov index of a homoclinic orbit

A subspace span{ξ1, ξ2} of R
4 is a Lagrangian subspace if ξ1 and ξ2 are linearly inde-

pendent and 〈Jξ1, ξ2〉 = 0. Here and throughout 〈·, ·〉 is the standard inner product
on R

4. The stable and unstable subspaces of (1.5) are Lagrangian subspaces.
The matrix A∞(λ) := J

−1
B∞(λ) and B∞(λ) is defined in (A 3) in Appendix A.

The characteristic polynomial of A∞(λ) is

det[A∞(λ) − µI] = µ4 + Pµ2 + 1 − λ = 0 .

For P < +2 and λ = 0 all four roots have non-zero real parts, and this property
will persist for λ small (and we are only interested in λ small in this paper). In fact,
two eigenvalues have positive real part and two have negative real part. Associated
with the eigenvalues with positive (negative) real part is a two-dimensional unstable
(stable) subspace. Denote the stable subspace of A∞(λ) by

Es(λ) = span{ξ1, ξ2} .

ξ1, ξ2 are the eigenvectors associated with the eigenvalues of A∞(λ) with negative
real part

A∞ξj = µjξj , Re(µj) < 0 , j = 1, 2 , (2.1)

with appropriate modification if µ1 = µ2. Eu(λ) is defined analogously. It is easy
to verify that Eu(λ) and Es(λ) are Lagrangian subspaces, and their x−dependent
extensions are also Lagrangian.

Let U
+(x, λ) be a 4× 2 matrix whose columns span the x−dependent unstable

subspace and so U
+(x, λ) → 0 as x → −∞. U

+(x, λ) is a path of Lagrangian
planes. The Maslov index is defined as the signed count of the intersections of the
image of U+ with Es as x goes from −∞ to +∞. This definition of the Maslov index
for homoclinic orbits is equivalent to the definition introduced in Jones (1988) and
Bose & Jones (1995), although here a computable expression for the intersection
form is required.

A point x0 is called a point of one-dimensional intersection between Image(U+)
and Es if

Image(U+(x0, λ)) ∩ Es(λ) = span{ξ} ,

for some vector ξ ∈ R
4. Clearly this implies that

ξ = α1ξ1 + α2ξ2 = U
+β ,

at the intersection for some α = (α1, α2) ∈ R
2 \ {0} and β ∈ R

2 \ {0}. A one-
dimensional intersection is regular at x0 if the crossing is transversal as x is varied.
To test for transversality, an intersection form is used.
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Formulas for the intersection form have been given in Robbins (1991,1992)
and Robbin & Salamon (1993). These representations are equivalent (modulo a
choice of orientation) and they are based on the following formula. At a point of
one-dimensional intersection x0, the crossing form is defined as:

Γ(U+,Es, x0) = 〈JU
+
x β,U

+β〉 vol ,

where vol is the chosen volume form, which is fixed throughout to be

vol = e1 ∧ e2 ∧ e3 ∧ e4 ,

with R
4 = span{e1, e2, e3, e4}.

When Γ(U+,Es, x0) 6= 0, the intersection is said to be regular. The sign of the

intersection is defined as the sign of Γ(U+,Es, x0).
Using the differential equation and the representation of ξ in (2.1), this is

Γ(U+,Es, x0) = 〈B(x0, λ)ξ, ξ〉 vol . (2.2)

We are now in a position to define the Maslov index of the path U
+. Suppose

that
lim

x→±∞
Image(U+(x, λ)) ∩ Es(λ) = {0} ,

and for −∞ < x < +∞ assume that the intersections between Image(U+) and
Es(λ) are one-dimensional (higher-order intersections can also be accounted for
but will not be needed here) and regular. Then the Maslov index of the path U

+ is

Maslov(U+,Es, λ) =
∑

x0

sign 〈B(x0, λ)ξ, ξ〉 , (2.3)

where the sum is over all points of intersection −∞ < x0 <∞.
The Maslov index of the homoclinic orbit is defined as the limit as λ→ 0+,

Maslov
homoclinic = lim

λ→0+
Maslov(U+,Es, λ) . (2.4)

(a) The role of λ

The appearance of λ in the formulation appears odd, since we are interested
in the Maslov index of homoclinic orbits and this index should be defined purely
in terms of the steady equation (1.3). However, the parameter λ is of interest for
two reasons. First, it is a stability exponent for the time-dependent equation (1.2).
While the issue of stability is only briefly remarked on in this paper, the stability
of solitary waves is one of the motivating factors in the study of the Maslov index
(cf. Jones (1988), Bose & Jones (1995), Chardard et al. (2008)).

The second reason that λ is useful is as a numerical device. When λ = 0 there
is a bounded solution of (1.5) (ŵx in the notation of Appendix A), and so the
Maslov index jumps by one at this point. By perturbing λ slightly this property is
eliminated. Hence the numerical computations are carried out with λ small. Taking
the limit λ→ 0− differs from λ→ 0+ but it is merely a convention to decide which
limit to take. Here we have opted for the + convention (2.4).

In principle the Maslov index (2.3) is straightforward to compute. We fix λ

near 0+ and integrate the unstable subspace of (1.5) from x = −L to x = +L for
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some large L and sum the signed intersections. However integration of the unstable
subspace is numerically unstable! To avoid this difficulty, the induced equation on∧2(R4) is integrated and this approach is numerically stable (Allen & Bridges

2002, Chardard et al. 2006, 2008).

3. Exterior algebra representation of Maslov index

The advantage of an exterior algebra representation is that two-dimensional sub-
spaces of R

4 become lines in the exterior algebra space. This strategy reduces the
numerical integration to a problem similar to integration on R

2, and then numerical
integration is trivial. The details of numerical integration on exterior algebra spaces
in this context is given in Chardard et al. (2008) and only the basic details are
given here.∧2

(R4) is a six-dimensional vector space spanned by all non-trivial two-vectors
of the form ei∧ej, i, j = 1, . . . , 4. The orthonormal basis induced from the standard
basis of R

4 is

E1 = e1 ∧ e2 , E2 = e1 ∧ e3 , E3 = e1 ∧ e4 ,

E4 = e2 ∧ e3 , E5 = e2 ∧ e4 , E6 = e3 ∧ e4 .
(3.1)

Any U ∈
∧2

(R4) can be represented in the form U =
∑6

j=1 Uj Ej . An element of
∧2

(R4) does not necessarily represent a two-plane. A point U ∈
∧2

(R4) represents
a two-plane if

0 = U ∧ U = (U1U6 − U2U5 + U3U4) vol .

This submanifold of the projectification of
∧2

(R4) is the Grassmannian of two-
planes in R

4, G2(R
4). A two-plane is Lagrangian if in addition it satisfies

0 = ω ∧U = (U2 + U5) vol ,

where ω = e1 ∧ e3 + e2 ∧ e4 is the two form associated with J.
The practical implementation involves constructing an induced ODE on

∧2
(R4).

Given the linear system ux = A(x, λ)u on R
4 with A = J

−1
B(x, λ) there is an

induced linear system on
∧2(R4),

Ux = A
(2)(x, λ)U , U ∈

∧2
(R4) .

A
(2)(x, λ) is a 6 × 6 matrix whose entries are linear functions of the entries of

A(x, λ). A formula for the entries is given in §2 of Allen & Bridges (2002) and
the induced matrix associated with (1.5) is given in Appendix A.

In this setting, the stable subspace at infinity is represented by the two form
ξ1 ∧ ξ2 and the path of unstable subspaces is represented by a two form which will
be denoted by U

+(x, λ). It satisfies

U
+
x = A

(2)(x, λ)U+ , with lim
x→−∞

e−σ+(λ)x
U

+(x, λ) = ζ+(λ) , (3.2)

where ζ+(λ) ∈
∧2(R4) represents the unstable subspace Eu(λ) and σ+(λ) is the

sum of the two eigenvalues of A∞(λ) with positive real part.
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An intersection between U
+ and Es(λ) can be described as follows. U

+ has a
non-trivial intersection with Es if and only if there exists α = (α1, α2) ∈ R

2 with
α 6= 0 and

U
+(x, λ) ∧ (α1ξ1 + α2ξ2) = 0 . (3.3)

If U
+(x, λ) ∧ (α1ξ1 + α2ξ2) = 0 implies α = 0 then we say that U

+(x, λ) and
Es(λ) are transverse. At a one-dimensional regular intersection α 6= 0 but it is a
one-dimensional subspace of R

2. Intersections can also be checked by monitoring
the sign changes of the four-form U

+ ∧ξ1∧ξ2, but the test based on (3.3) is needed
for construction of the crossing form.

In the exterior algebra setting a representation of the crossing form is

Γ(U+,Es, x0) = ω ∧ ξ ∧ Aξ . (3.4)

To verify that this is equivalent to (2.2), note that

ω ∧ a ∧ J
−1

c = 〈a, c〉 vol , for any a, c ∈ R
4 .

Hence ω∧ξ∧Aξ = ω∧ξ∧J
−1

Bξ = 〈ξ,Bξ〉 vol. The formula (3.4) has an interesting
geometric interpretation. At a regular intersection, the two-plane ξ ∧ Aξ is not a
Lagrangian plane. It is in the complement to the Lagrangian in G2(R

4).
Suppose that limx→±∞ U

+(x, λ) is transverse to Es(λ), and suppose all the
intersections are one-dimensional and regular. Then

Maslov(U+,Es, λ) =
∑

x0

signω ∧ ξ ∧ Aξ .

The Maslov index of the multi-pulse homoclinic orbit is then obtained by taking
the limit λ→ 0+.

4. An algorithm for computing the Maslov index

An algorithm for computing the Maslov index based on the exterior algebra repre-
sentation is constructed as follows. Fix λ. Compute a basis for Es(λ) and Eu(λ).
Earlier, Es(λ) was expressed as span{ξ1, ξ2}. Here the stable and unstable subspaces
will be represented in the exterior algebra representation. This just means solving

A∞(λ)ζ±(λ) = σ±(λ)ζ+(λ) ,

with σ+(λ) (σ−(λ)) the sum of the two eigenvalues of A∞(λ) with positive (nega-
tive) real part. Then ζ−(λ) (ζ+(λ)) represents Es(λ) (Eu(λ)).

Integrate (3.2) with the exponential growth eσ+(λ)x factored out†

U
+
x = [A(2)(x, λ) − σ+(λ)I]U+ , −L < x < L , (4.1)

with
U

+(−L, λ) = ζ+(λ) , (4.2)

for some large value of L (typically we have used L = 25). For the numerical
integration a standard fourth-order explicit Runge-Kutta algorithm is used. All the

† Factoring out the exponential growth is purely a numerical device to ensure stable integration.
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codes are written in Matlab. Further details of the numerics including listings of
the Matlab codes can be found in the thesis of Chardard (2009).

Intersections are detected and counted as follows. Let

Yj(x, λ) = U
+(x, λ) ∧ ξj , j = 1, 2 .

Y1 and Y2 are three forms and
∧3

(R4) is a four dimensional vector space so it
is isomorphic to R

4 (this isomorphism can be explicitly constructed but is not
needed). An intersection occurs when Y1 and Y2 are linearly dependent and, viewed
as vectors in R

4, Y1 and Y2 are linearly dependent if and only if Y1 ∧Y2 = 0. Define

y(x, λ) = det

[
〈Y1, Y1〉 〈Y1, Y2〉

〈Y2, Y1〉 〈Y2, Y2〉

]
. (4.3)

Then Y1 ∧ Y2 = 0 is equivalent to y(x, λ) = 0, or numerically when y(x, λ) < ǫ for
some small ǫ > 0.

At each intersection, α1 and α2 are computed by solving α1Y1 + α2Y2 = 0. α
is then used to construct ξ and then the crossing form is evaluated. To summarize:
integrate (4.1) with initial condition (4.2) from x = −L to x = L. Monitor y(x, λ)
in (4.3) and when y(x, λ) ≈ 0 compute the sign of the crossing form and add the
appropriate sign to the Maslov counter. The Maslov index is then the value of the
Maslov counter at x = L.

5. Computing the Maslov index for orbits of (1.2)

Apply this theory to the system (1.5) associated with (1.2) linearized about a

multi-pulse homoclinic orbit. The induced matrix on
∧2(R4) is given in (A 4) in

Appendix A. The system at infinity is hyperbolic for all real λ satisfying λ < 1
(when P < 0) and λ < 1− 1

4P
2 (when P > 0), and A∞(λ) has two eigenvalues with

positive real part and two with negative real part. The eigenfunctions associated
with Es(λ) and Eu(λ) are easily calculated.

Before computing branches of multi-pulse homoclinic orbits in the BCT classifi-
cation, we sketch the properties of the classification. A homoclinic orbit is classified
according to the number of times its path in configuration space encircles the ori-
gin. The orbit is labelled by n(ℓ1, . . . , ℓn−1) where n is a natural number called
the modality, the number of large local maxima, and ℓk is twice the number of
encirclings of the origin of configuration space, between consecutive local maxima.
A family ψP of solutions of (1.3) is said to have a mode at sP if

lim
P→−2+

(ψP (si,P ), ψ′

P (si,P ), ψ′′

P (si,P ), ψ′′′

P (si,P )) = (φ−2(0), φ′−2(0), φ′′−2(0), φ′′′−2(0)) .

A multi-pulse homoclinic orbit is said to have type n(ℓ1, ℓ2, . . . , ℓn) if it has n modes
at the points s1,P , s2,P , . . . , sn,P , and

lim
P→−2+

si+1,P − si,P = ∞ ,

and the number of zeros of 1
2ψ

′′2
P − 1

2ψ
2
P + 1

3ψ
3
P in [si,P , si+1,P ] is equal to 2ℓi.

BCT have conjectured that there is a unique family of each type, up to a space
translation.
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Figure 1. Bimodal multi-pulse homoclinic orbits with P = 1.5.
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Soliton 5(3,1,1,3) when q=1 and P=−1.5

Figure 2. A solitary wave of type 5(3, 1, 1, 3) at P = 1.5. The Maslov index is 10.

An important property of this classification is that it is precise only in the limit
P → −2. Therefore the strategy for computing a multi-pulse orbit of (1.3) in the
BCT classification is to start with an orbit near P = −2 and then continue it in
P . Examples of bimodal multi-pulse orbits are shown in Figure 1. The 2(ℓ) pulses
in this figure are all symmetric. They were computed using the shooting algorithm
of Champneys & Spence (1993). Indeed, Figure 1 was inspired by Figure 4(a) in
Champneys & Spence (1993). An example of a symmetric multi-pulse orbit of
modality 5 is shown in Figure 2.

Asymmetric solutions are computed using a Fourier method (approximate the
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Figure 3. Trimodal solution 3(3, 1) when P = 1.5. The Maslov index is 6.

homoclinic orbit by a periodic solution of large wavelength). An example of an
asymmetric multipulse orbit of type 3(3, 1) is shown in Figure 3. The Matlab

codes used are listed in the Appendix of Chardard (2009).
We now proceed to compute the Maslov index for a series of multi-pulse orbits.

Fixing a multi-pulse orbit in the BCT classification, the Maslov index is computed
using the algorithm in §4. To double check the computations, we also computed the
Maslov index by approximating the multi-pulse orbit by a periodic solution of long
wavelength, and then using the formula in (Chardard et al. 2006, Chardard

2007). See Chardard et al. 2008 for other algorithms for computing the Maslov
index. The results for a range of orbits in the BCT classification are listed in Table
1.

The table shows that all computed orbits satisfy the formula (1.1), and so it
is reasonable to conjecture that it is true for all multi-pulse orbits in the BCT
classification.

There are other examples in the literature of multi-pulse homoclinic orbits that
can be identified with the BCT classification and so their Maslov indices can be
predicted. The homoclinic orbits found by Champneys & Toland (1993) are of
type 2(ℓ) and so they have Maslov index 3 (if ℓ is even) or 4 (if ℓ is odd). They
were proved to exist for P ∈ (−2,−2 + ε). Numerical results of Buffoni et al.

(1996) suggest that homoclinic orbits of the type n(ℓ1, . . . , ℓn−1) exists for all n ≥ 2
and all P ∈ (−2, 1.5]. The homoclinic orbits found by Buffoni (1995) are of type
n(1, . . . , 1) and hence they have Maslov index 2(n − 1), and they were shown to
exist for all P ∈ (−2, 0]. One can deduce from this that homoclinic orbits of the
ODE (1.3) exist with Maslov index of every natural number.

6. Bifurcation and Coalescence

The branches of multi-pulse homoclinic orbits that start at P = −2 appear to end
at some value of P < 2. Buffoni et al. (1996) identified two types of termination
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Table 1. Computed Maslov index for multi-pulse homoclinic orbits in the BCT

classification

Family Maslov Index

1 2

2(1) 4

2(2) 3

2(3) 4

2(4) 3

2(6) 3

2(7) 4

2(8) 3

2(9) 4

2(10) 3

3(2, 1) 5

3(3, 1) 6

3(1, 1) 6

3(2, 2) 4

3(3, 3) 6

Family Maslov Index

3(4, 4) 4

3(5, 5) 6

3(6, 6) 4

4(3, 1, 3) 8

4(3, 2, 3) 7

4(3, 3, 3) 8

4(3, 4, 3) 7

4(3, 5, 3) 8

4(3, 6, 3) 7

5(3, 1, 1, 3) 10

5(3, 2, 2, 3) 8

5(3, 3, 3, 3) 10

6(3, 2, 1, 2, 3) 10

6(3, 2, 2, 2, 3) 9

6(3, 2, 3, 2, 3) 10

point: coalescence and bifurcation. A coalescence corresponds to a turning point
and can occur along a symmetric or asymmetric branch. A “bifurcation” in this
context is a point where a symmetric branch changes type and has a pitchfork
bifurcation to a asymmetric branch. A theory for bifurcation and coalescence using
a Lyapunov Schmidt reduction has been developed by Knobloch (1997). In this
section we look at the implications of coalescence and bifurcation for the Maslov
index. We will concentrate on one example which is illustrative.

The numerics also showed that bifurcation and coalescence often both occur
along the same branch. A schematic of Figure 17(c) in Buffoni et al. (1996) is
shown in Figure 4. This scenario is an ideal setting to test the implication of the
Maslov index. Indeed, we have found a surprising result. Consider the case in Figure
4. We can apply the formula (1.1) to deduce that the branch 4(2, 1, 2) has Maslov
index 6. We confirmed this value numerically. Then after the coalescence point the
computations show that the Maslov index jumps to 5. Now, start from the branch
2(1). The formula and numerics show that the Maslov index is 4. Similar use of the
formula and computation show that the Maslov indices of the asymmetric 3(1, 2)
and 3(2, 1) branches are also 5. The numerically computed multi-pulse homoclinic
orbits emanating from the bifurcation point are shown in Figure 5.

These observations show an interesting anomaly in the BCT classification. The
short branch between the coalescence point and the bifurcation point is not classi-
fiable by the BCT scheme. On the other hand, this observation is consistent with
the theory of BCT. A branch of multi-pulse homoclinic orbits can only be BCT
classified if it can be continued to P = −2. It is precisely the branch between the
coalescence and bifurcation point that can not be continued to P = −2. All other
branches in Figure 4 can be continued to P = −2. These observations have been
obtained numerically. By adapting the theory of Knobloch (1997), Chardard
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Figure 4. Schematic of Figure 17(c) from Buffoni et al. (1996) with Maslov indices
identified.
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Figure 5. Orbits 3(2, 1), 2(1), 3(1, 2) when P = 1.5. The branches 3(2, 1) and 3(1, 2)
bifurcate from 2(1) at P ≈ 1.83817.

(2009) has sketched an argument showing that indeed the Maslov index jumps by
one at each bifurcation point and at each coalescence point.

The property of coalescence and bifurcation occuring close together along a
branch appears to be pervasive, and so there will be many gaps where the multi-
pulse homoclinic orbits are not classifiable by the BCT scheme (see Figure 24 of
Buffoni et al.1996). However, all these orbits have a well-defined Maslov index.

7. Remarks on the Morse index and stability of solitary
waves

Let

L :=
d4

dx4
+ P

d2

dx2
+ 1 − 2φ̂(x) .

Then (1.4) can be written L φ = λφ. Informally, the Morse index of L is the
number of negative eigenvalues of L . To be precise the function space needs to be
identified and the spectrum decomposed. Here, just a rough idea of the connection
between the Morse and Maslov indices is given. In general the Morse and Maslov
indices are not equal. Indeed, one can construct examples where the Morse index
is infinite but the Maslov index is finite. On the other hand, the operator L has a
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nice structure. It has a monotonicity property which assures that the Maslov index
and Morse index are equal (this is proved in Chardard 2009).

With that observation, the role of the Maslov index in stability is quite remark-
able. For example, in the Swift-Hohenberg equation (1.2), viewing the multi-pulse
homoclinic orbits as stationary localized solitary waves, the Maslov index equals
the number of unstable eigenvalues. Therefore one can concude that the higher
modality multi-pulse solitary waves – indeed all solitary waves in the BCT classi-
fication – are linearly unstable solutions of (1.2), and the higher the modality the
more unstable it is.

When this theory is applied to the fifth-order KdV equation however the results
are more interesting since high Maslov index solitary waves can still be stable. See
Chardard et al. (2008) for results in this direction.

Appendix A. Hamiltonian formulation

The ODE (1.3) can be formulated as a Hamiltonian system in many ways. The
Hamiltonian formulation used in the numerics is recorded here. Let

q1 = φ , q2 = φxx , p1 = φxxx + Pφx , p2 = φx ,

and define

H(q, p) =
1

2
q21 −

1

2
q22 + p1p2 −

1

2
Pp2

2 −
1

3
q31 .

Then (1.3) is represented by the Hamiltonian system

Jwx = ∇H(w) , w = (q1, q2, p1, p2) , (A 1)

where J is the standard symplectic operator defined in (1.7).

Let φ̂(x) be a solution of (1.3) and ŵ its associated solution of (A 1),

ŵ(x) := (φ̂, φ̂xx, φ̂xxx + Pφ̂x, φ̂x) .

Then the linearization of (A 1) about ŵ is

Jux = D2H(ŵ)u ,

where D2H(ŵ) is the Hessian of H evaluated at ŵ. Define

B(x, λ) = D2H(ŵ)u− λI =





1 − 2q̂1(x) − λ 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 −P



 . (A 2)

The linear Hamiltonian system Jux = B(x, λ)u with u ∈ R
4 is the main object of

study in the paper. The “system at infinity” is defined by

B∞(λ) = lim
x→±∞

B(x, λ) =





1 − λ 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 −P



 . (A 3)
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Define A(x, λ) = J
−1

B(x, λ). Then the matrix induced from A(x, λ) on
∧2

(R4) is

A
(2)(x, λ) =





0 1 −P 0 −1 0

0 0 0 0 0 −1

1 0 0 0 0 0

a(x, λ) 0 0 0 0 +P

0 0 0 0 0 1

0 0 −a(x, λ) −1 0 0




. (A 4)

For any u,v ∈ R
4 this matrix is defined by

A
(2)(·)u ∧ v := A(·)u ∧ v + u ∧ A(·)u .

Details of the construction of induced matrices is given in Allen & Bridges

(2002).
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