Exact discrete minimization for TV+L0 image decomposition models

Loïc Denis¹, Florence Tupin² and Xavier Rondeau²

- 1. Observatory of Lyon (CNRS / Univ. Lyon 1 / ENS de Lyon), France
 - 2. Telecom ParisTech (Institut Telecom / CNRS LTCI), Paris, France

this work has been funded by DGA under contract REI 2008.34.0042

IEEE ICIP 2010 - Image Enhancement II - 28 Sept. 2010

Context

Synthetic aperture radar (SAR) images denoising:

noise / signal separation using a variational approach: recover scene u as the minimizer of $E_{\text{data}}(u, v) + E_{\text{reg}}(u)$

Radar scene distinctive feature: strong scatterers (very bright dots)

Q: How to model such scenes?

Q: How to compute the corresponding minimizers?

Overview

- 1. TV+L0 image decomposition models
- 2. Exact discrete minimization by graph-cuts
- 3. Results and discussion

Total variation denoising: $\hat{u} = \arg \min_{u} E_{data}(u, v) + E_{reg}(u)$

$$E_{\mathsf{reg}}(oldsymbol{u}) = \mathrm{TV}(oldsymbol{u}) := \int \sqrt{(
abla_x oldsymbol{u})^2 + (
abla_y oldsymbol{u})^2} \; \, \mathsf{d}x \, \mathsf{d}y$$

- preserves sharp boundaries
- cartoon-like images (staircasing effect), favors larger regions

Image decomposition: e.g., $E_{data}(u - v) = ||u - v||_1$

texture

geometry

(illustration from [Yin, Goldfarb & Osher 2005])

TV denoising vs TV+L0 image decomposition:

TV denoising vs TV+L0 image decomposition:

TV denoising vs TV+L0 image decomposition:

Image decomposition provides a way to enrich scene modeling

$$(\widehat{u_{\mathrm{BV}},u_{\mathrm{S}}}) = \underset{(u_{\mathrm{BV}},u_{\mathrm{S}})}{\mathsf{arg}} \hspace{0.1cm} \mathsf{min} \hspace{0.1cm} E_{\mathsf{data}}(v,u_{\mathrm{BV}},u_{\mathrm{S}}) \hspace{0.1cm} + \hspace{0.1cm} E_{\mathsf{reg}}(u_{\mathrm{BV}},u_{\mathrm{S}})$$

$$(\widehat{u_{\mathrm{BV}},u_{\mathrm{S}}}) = \underset{(u_{\mathrm{BV}},u_{\mathrm{S}})}{\operatorname{arg min}} \quad E_{\mathsf{data}}(v,u_{\mathrm{BV}},u_{\mathrm{S}}) + E_{\mathsf{reg}}(u_{\mathrm{BV}},u_{\mathrm{S}})$$

1. Image formation model

Assumption: separable likelihood (no blurring, uncorrelated noise)

$$E_{\text{data}} = \sum_{k} -\log p(v_k|u_{\text{BV}k}, u_{\text{S}k})$$

Speckle noise \rightarrow Rayleigh distribution:

$$E_{\mathsf{data}} = \sum_{k} \frac{v_k^2}{(u_{\mathrm{BV}_k} + u_{\mathrm{S}_k})^2} + 2\log(u_{\mathrm{BV}_k} + u_{\mathrm{S}_k})$$

Positivity constraints:

$$\forall k, u_{\mathrm{BV}k} > 0 \text{ and } u_{\mathrm{S}k} \geq 0$$

$$(\widehat{u_{\mathrm{BV}},u_{\mathrm{S}}}) = \underset{(u_{\mathrm{BV}},u_{\mathrm{S}})}{\mathsf{arg}} \quad E_{\mathsf{data}}(v,u_{\mathrm{BV}},u_{\mathrm{S}}) + E_{\mathsf{reg}}(u_{\mathrm{BV}},u_{\mathrm{S}})$$

2. Image decomposition model

Prior model: decomposition into *sparse* and *bounded variations* components

$$E_{\text{reg}} = \beta_{\text{S}} \operatorname{L0}(\boldsymbol{u}_{\text{S}}) + \beta_{\text{BV}} \operatorname{TV}(\boldsymbol{u}_{\text{BV}})$$

$$(\widehat{m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}}}) = \mathop{\mathsf{arg\ min}}_{(m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}})} \quad E_{\mathsf{data}}(m{v},m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}}) \ + \ E_{\mathsf{reg}}(m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}})$$

Minimization problem

 E_{data} is non-convex (quasi-convex) E_{reg} is non-convex (due to L0 term)

ightarrow the problem is non-convex

Variable coupling:

- $u_{
 m BV}$ and $u_{
 m S}$ are coupled
- $u_{
 m BV}$ is spatially coupled

global minimization is hard...

$$(\widehat{m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}}}) = \operatorname*{\mathsf{arg\ min}}_{(m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}})} \ E_{\mathsf{data}}(m{v},m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}}) \ + \ E_{\mathsf{reg}}(m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}})$$

Minimization problem

 E_{data} is non-convex (quasi-convex) E_{reg} is non-convex (due to L0 term)

 \rightarrow the problem is non-convex

Variable coupling:

- $u_{
 m BV}$ and $u_{
 m S}$ are coupled
- $u_{
 m BV}$ is spatially coupled

global minimization is hard...

① Consider u_{BV} fixed. The restricted problem is spatially separable:

$$m{u}_{\mathrm{S}}^{\star}(m{u}_{\mathrm{BV}}) = \underset{m{u}_{\mathrm{S}}}{\mathrm{min}} \quad E_{\mathsf{data}}(m{v},m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}}) + eta_{\mathrm{S}} \, \mathrm{L0}(m{u}_{\mathrm{S}}) + eta_{\mathrm{BV}} \, \mathrm{TV}(m{u}_{\mathrm{BV}})$$

The problem reduces to a 1D problem per pixel (easy).

 $oldsymbol{0}$ The original problem can be reformulated with $oldsymbol{u}_{\mathrm{BV}}$ only

$$\underset{\boldsymbol{u}_{\mathrm{BV}}}{\mathsf{arg}} \hspace{0.1cm} \mathsf{min} \hspace{0.3cm} E_{\mathsf{data}}(\boldsymbol{v}, \boldsymbol{u}_{\mathrm{BV}}, \boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{S}} \operatorname{L0}(\boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{BV}} \operatorname{TV}(\boldsymbol{u}_{\mathrm{BV}})$$

which is of the form:

$$\underset{u_{\mathrm{BV}}}{\mathsf{arg}} \hspace{0.1cm} \mathsf{min} \hspace{0.3cm} \sum_{k} f_k(u_{\mathrm{BV}\,k}) + \sum_{(k,l)} g_{kl}(u_{\mathrm{BV}\,k}, u_{\mathrm{BV}\,l})$$

Exact discrete minimization is possible with a maximum-flow / minimum s-t cut algorithm, due to the structure of the problem: it is the sum of a separable and a convex term involving only first-order cliques.

1 Consider $u_{\rm BV}$ fixed. The restricted problem is spatially separable:

$$m{u}_{\mathrm{S}}^{\star}(m{u}_{\mathrm{BV}}) = \underset{m{u}_{\mathrm{S}}}{\mathrm{min}} \quad E_{\mathsf{data}}(m{v},m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}}) + eta_{\mathrm{S}} \, \mathrm{L0}(m{u}_{\mathrm{S}}) + eta_{\mathrm{BV}} \, \mathrm{TV}(m{u}_{\mathrm{BV}})$$

The problem reduces to a 1D problem per pixel (easy).

2 The original problem can be reformulated with $u_{\rm BV}$ only:

$$\underset{\boldsymbol{u}_{\mathrm{BV}}}{\text{arg min}} \quad E_{\mathsf{data}}(\boldsymbol{v}, \boldsymbol{u}_{\mathrm{BV}}, \boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{S}} \operatorname{L0}(\boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{BV}} \operatorname{TV}(\boldsymbol{u}_{\mathrm{BV}})$$

① Consider $u_{\rm BV}$ fixed. The restricted problem is spatially separable:

$$m{u}_{
m S}^{\star}(m{u}_{
m BV}) = \mathop{
m arg \; min}_{m{u}_{
m S}} \quad E_{\sf data}(m{v},m{u}_{
m BV},m{u}_{
m S}) + eta_{
m S} \, {
m L0}(m{u}_{
m S}) + eta_{
m BV} \, {
m TV}(m{u}_{
m BV})$$

The problem reduces to a 1D problem per pixel (easy).

2 The original problem can be reformulated with $u_{\rm BV}$ only:

$$\underset{\boldsymbol{u}_{\mathrm{BV}}}{\text{arg min}} \quad E_{\mathsf{data}}(\boldsymbol{v}, \boldsymbol{u}_{\mathrm{BV}}, \boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{S}} \operatorname{L0}(\boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{BV}} \operatorname{TV}(\boldsymbol{u}_{\mathrm{BV}})$$

Q Consider u_{BV} fixed. The restricted problem is spatially separable:

$$m{u}_{\mathrm{S}}^{\star}(m{u}_{\mathrm{BV}}) = \underset{m{u}_{\mathrm{S}}}{\mathrm{min}} \quad E_{\mathsf{data}}(m{v}, m{u}_{\mathrm{BV}}, m{u}_{\mathrm{S}}) + eta_{\mathrm{S}} \, \mathrm{L0}(m{u}_{\mathrm{S}}) + eta_{\mathrm{BV}} \, \mathrm{TV}(m{u}_{\mathrm{BV}})$$

The problem reduces to a 1D problem per pixel (easy).

② The original problem can be reformulated with u_{BV} only:

$$\underset{\boldsymbol{u}_{\mathrm{BV}}}{\text{arg min}} \quad E_{\mathsf{data}}(\boldsymbol{v}, \boldsymbol{u}_{\mathrm{BV}}, \boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{S}} \operatorname{L0}(\boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{BV}} \operatorname{TV}(\boldsymbol{u}_{\mathrm{BV}})$$

Q Consider u_{BV} fixed. The restricted problem is spatially separable:

$$m{u}_{\mathrm{S}}^{\star}(m{u}_{\mathrm{BV}}) = \operatorname*{arg\ min}_{m{u}_{\mathrm{S}}} \quad E_{\mathsf{data}}(m{v},m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}}) + eta_{\mathrm{S}} \, \mathrm{L0}(m{u}_{\mathrm{S}}) + eta_{\mathrm{BV}} \, \mathrm{TV}(m{u}_{\mathrm{BV}})$$

The problem reduces to a 1D problem per pixel (easy).

2 The original problem can be reformulated with u_{BV} only:

$$\underset{\boldsymbol{u}_{\mathrm{BV}}}{\text{arg min}} \quad \boldsymbol{E}_{\mathsf{data}}(\boldsymbol{v}, \boldsymbol{u}_{\mathrm{BV}}, \boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{S}} \operatorname{L0}(\boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{BV}} \operatorname{TV}(\boldsymbol{u}_{\mathrm{BV}})$$

which is of the form:

$$\underset{\boldsymbol{u}_{\mathrm{BV}}}{\text{arg min}} \quad \sum_{k} f_{k}(u_{\mathrm{BV}k}) + \sum_{(k,l)} g_{kl}(u_{\mathrm{BV}k}, u_{\mathrm{BV}l})$$

Exact discrete minimization is possible with a maximum-flow / minimum s-t cut algorithm, due to the structure of the problem: it is the sum of a separable and a convex term involving only first-order cliques.

Q Consider $u_{\rm BV}$ fixed. The restricted problem is spatially separable:

$$m{u}_{\mathrm{S}}^{\star}(m{u}_{\mathrm{BV}}) = \underset{m{u}_{\mathrm{S}}}{\mathrm{min}} \quad E_{\mathrm{data}}(m{v},m{u}_{\mathrm{BV}},m{u}_{\mathrm{S}}) + eta_{\mathrm{S}} \, \mathrm{L0}(m{u}_{\mathrm{S}}) + eta_{\mathrm{BV}} \, \mathrm{TV}(m{u}_{\mathrm{BV}})$$

The problem reduces to a 1D problem per pixel (easy).

2 The original problem can be reformulated with u_{BV} only:

$$\underset{\boldsymbol{u}_{\mathrm{BV}}}{\text{arg min}} \quad \boldsymbol{E}_{\mathsf{data}}(\boldsymbol{v}, \boldsymbol{u}_{\mathrm{BV}}, \boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{S}} \operatorname{L0}(\boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{BV}} \operatorname{TV}(\boldsymbol{u}_{\mathrm{BV}})$$

which is of the form:

$$\underset{\boldsymbol{u}_{\mathrm{BV}}}{\text{arg min}} \quad \sum_{k} f_{k}(\boldsymbol{u}_{\mathrm{BV}k}) + \sum_{(k,l)} g_{kl}(\boldsymbol{u}_{\mathrm{BV}k}, \boldsymbol{u}_{\mathrm{BV}l})$$

Exact discrete minimization is possible with a maximum-flow / minimum s-t cut algorithm, due to the structure of the problem: it is the sum of a separable and a convex term involving only first-order cliques.

2. Energy minimization problem: graph-cuts methodology

• The pixel grid is mapped to a graph with two terminal nodes:

② A minimum s-t-cut is computed:

1 The cut is interpreted as a solution of the original problem:

2. Energy minimization problem: graph construction

$$\underset{\boldsymbol{u}_{\mathrm{BV}}}{\text{arg min}} \quad \boldsymbol{E}_{\mathsf{data}}(\boldsymbol{v}, \boldsymbol{u}_{\mathrm{BV}}, \boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{S}} \operatorname{L0}(\boldsymbol{u}_{\mathrm{S}}^{\star}(\boldsymbol{u}_{\mathrm{BV}})) + \beta_{\mathrm{BV}} \operatorname{TV}(\boldsymbol{u}_{\mathrm{BV}})$$

- $\emph{\textbf{u}}_{\mathrm{BV}}$ is decomposed into its level sets
- each level is represented by a layer of the graph
- vertical arcs going downstream represent

$E_{\mathsf{data}}(\cdot) + \beta_{\mathsf{S}} \operatorname{L0}(\cdot)$

- horizontal arcs represent $eta_{\mathrm{BV}}\,\mathrm{TV}(m{\textit{u}}_{\mathrm{BV}})$
- positivity is naturally enforced

Ishikawa's graph for multi-valued images [Ishikawa PAMI2003]

8/10

Strong scatterers $u_{\rm S}$

Homogeneous regions u_{BV}

- suppresses the bias on strong scatterers

 i.e., loss of contrast and suppression of point-like objects)
- better preserves resolution (strong scatterers do not spread)

- suppresses the bias on strong scatterers

 (i.e., loss of contrast and suppression of point-like objects)
- better preserves resolution (strong scatterers do not spread)

- suppresses the bias on strong scatterers

 (i.e., loss of contrast and suppression of point-like objects)
- better preserves resolution (strong scatterers do not spread)

- suppresses the bias on strong scatterers

 (i.e., loss of contrast and suppression of point-like objects)
- better preserves resolution (strong scatterers do not spread)

comparable smoothing of homogenous areas

- suppresses the bias on strong scatterers

 (i.e., loss of contrast and suppression of point-like objects)
- better preserves resolution (strong scatterers do not spread)

3. Conclusion

- The prior model benefits from image decomposition
- $m{o}$ Decomposition choice: a component with bounded variations $m{u}_{\mathrm{BV}}$ and a sparse component $m{u}_{\mathrm{S}}$
- Minimization of TV+L0 is challenging but exact discrete minimization is possible with graph-cuts
- A drawback of this minimization approach is its memory cost: $O(\text{number of pixels} \times \text{number of quantization levels})$
- More elaborate speckle noise models (strong scatterer + random phasors) can be applied with the proposed decomposition for SAR image denoising (→ Rice distribution, see paper)

Questions?

loic.denis@cpe.fr

the slides can be downloaded from my homepage (http://www-obs.univ-lyon1.fr/labo/perso/loic.denis/)