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Context

Synthetic aperture radar (SAR) images denoising:

b

© CNES / DGA

'noi data
v n u

noise / signal separation using a variational approach:
recover scene u as the minimizer of Eqaa(u, v) + Ereg(u)

Radar scene distinctive feature: strong scatterers (very bright dots)
Q: How to model such scenes?

Q: How to compute the corresponding minimizers?
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Overview

1. TV+L0 image decomposition models

2. Exact discrete minimization by graph-cuts

3. Results and discussion



1. Denoising and image decomposition

Total variation denoising: &1 = arg min  Egyea(u, v) + Ereg(u)
u

Ereg(u) = TV(u /\/ (Viu)? + (Vyu)? dxdy
& preserves sharp boundaries
R cartoon-like images (staircasing effect), favors larger regions

Image decomposition: e.g., Egata(U— v) = ||lu— V|1

w

image texture geometry
(illustration from [Yin, Goldfarb & Osher 2005])
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1. Denoising and image decomposition

TV denoising vs TV+L0 image decomposition:

noise X

TV denoising

noise X

TV+LO
decomposition
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1. Denoising and image decomposition

TV denoising vs TV+L0 image decomposition:

noise X

- - + .)

Image decomposition provides a way to enrich scene modeling

TV denoising

TV+LO
decomposition
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2. Energy minimization problem

(upv,us) = arg min  Egaa(v, upy, us) + Eeg(upy, us)
(uBv,us)
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2. Energy minimization problem

o —

(upv,us) = arg min  Eqaa(v, Uy, Us) + Ereg(UBv, Us)

(uBv,us)

1. Image formation model

Assumption: separable likelihood
(no blurring, uncorrelated noise)

Egata = Zk - |Og p(Vk‘UBVka USk)

Speckle noise — Rayleigh distribution:

2
V,
Edata = Zk 7(’-’BVk:’USk)2 +2log(uBvk+usk)

Positivity constraints:

Vk, ugvig >0 and wg, >0

Edata
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2. Energy minimization problem

o —

(UBV7 US) = arg min Edata(Va ugyv, US) + Ereg(uBVa US)
(uv,us)

2. Image decomposition model

Ereg
Prior model: 8
decomposition into sparse and 7

60

bounded variations components

50

Eeg = s LO(us) + v TV (upy) ©
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2. Energy minimization problem

—

(upv,us) = arg min  Egaa(v, upy, us) + Eeg(uny, us)
(uBv,ug)

Minimization problem
P Edata + Ereg

Egata is non-convex (quasi-convex) 8
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- ugy is spatially coupled

global minimization is hard. ..
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2. Energy minimization problem

—_—
(upv,ug) = ?fg mi”) Egata(V, uv, us) + Ereg(upy, us)
upvy,us

Minimization problem

Edata + Ereg

Egata is non-convex (quasi-convex) # Which one of these local
Ereg is non-convex (due to LO term) °1 minima is the global min?

60 4 BT
SR
KL

50

— the problem is non-convex 401
30

204

Variable coupling:
- ugy and ug are coupled
- ugy is spatially coupled

10

global minimization is hard. ..
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2. Energy minimization problem: reformulation

@ Consider ugy fixed. The restricted problem is spatially separable:
u§(upy) = arg min  Egaa(v, upy, us) + Bs LO(us)
us

The problem reduces to a 1D problem per pixel (easy).
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@ Consider upy fixed. The restricted problem is spatially separable:

ug(upy) = arg min  Eqaia(v, upy, us) + s LO(us)

us

The problem reduces to a 1D problem per pixel (easy).

@ The original problem can be reformulated with ugy only:

arg min - Eqaa (v, ugy, ug(upy)) + Bs LO(ug(ugy)) + Bev TV (ugy)

upv

Edata + Ereg

il

o
global minimum

40|

Egata(v, upv, u§(upv)) + fs LO(ug(upv))
+ By TV(upy)

s # 0 ugi* =0

N

global minimum
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@ Consider upy fixed. The restricted problem is spatially separable:
u§(upy) = arg min  Egaia(v, upy, us) + Bs LO(us)
us

The problem reduces to a 1D problem per pixel (easy).

@ The original problem can be reformulated with ugy only:

arg min - Eqaa (v, ugy, ug(upy)) + Bs LO(ug(ugy)) + Bev TV (ugy)

upv

Edata(v, upy, u§(upv)) + fs LO(ug(upv))
40 s
Edata + Ereg + Brv TV(upy)

i 1st regime:
%} there is a strong scatterer at pixel k
upy k depends on its neighbors

s # 0
j—
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2. Energy minimization problem: reformulation

@ Consider upy fixed. The restricted problem is spatially separable:

ug(upy) = arg min

us

Edata(V, uBv, ug) + s LO(us)

The problem reduces to a 1D problem per pixel (easy).

@ The original problem can be reformulated with ugy only:

arg min - Eqaa (v, ugy, ug(upy)) + Bs LO(ug(ugy)) + Bev TV (ugy)

upv

Edata + Ereg

il

— "4
global minimum

Egata(v, upv, ug(upv)) + s LO(ug(upv))
+ By TV(upy)

2nd regime:
no strong scatterer at pixel k
upy k achieves a compromis
between its neighbors
and the observed valu

—
ugt =0
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2. Energy minimization problem: reformulation

@ Consider ugy fixed. The restricted problem is spatially separable:

u§(upy) = arg min  Eqaea(v, Uy, us) + s LO(us)
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The problem reduces to a 1D problem per pixel (easy).

@ The original problem can be reformulated with ugy only:

arg min  Eqaea(v, upy, u§(upv)) + Bs LO(u§(upv)) + Bev TV(upy)

upv

which is of the form:

arg min >, fi(upvg) + Z(kJ) gr(UBV K, UBV/))
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2. Energy minimization problem: reformulation

@ Consider ugy fixed. The restricted problem is spatially separable:
ug(upy) = arg min  Egaa(v, upy, ug) + Bs LO(us)
us
The problem reduces to a 1D problem per pixel (easy).

@ The original problem can be reformulated with ugy only:
arg min  Eqaea(v, upy, u§(upv)) + Bs LO(u§(upv)) + Bev TV(upy)
upv
which is of the form:

arg min >, fi(upvg) + Z(kJ) gr(UBV K, UBV/))

upv

© Exact discrete minimization is possible with a maximum-flow /
minimum s-t cut algorithm, due to the structure of the problem:
it is the sum of a separable and a convex term involving only first-order
cliques.
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2. Energy minimization problem: graph-cuts methodology

@ The pixel grid is mapped to a graph with two terminal nodes:

@ A minimum

s-t-cut is computed:

pixel grid

© The cut is interpreted
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min s-t-cut

as a solution of the original problem:

&

min s-t-cut
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2. Energy minimization problem: graph construction

arg min  Eqaea(v, upv, u§(upv)) + Bs LO(us(upv)) + Bev TV(upy)

upv

pixel grid

/N

A h b A b b
Praw'a W ) W 'Wa'y
Pawaw 1) eVl
- upy is decomposed into its level sets e R
- each level is represented by a layer of the graph
- vertical arcs going downstream represent
Edata(-) + Bs LO(") Ishikawa's graph for multi-valued images
- horizontal arcs represent Sgv TV (usv) [Ishikawa PAMI2003]

- positivity is naturally enforced
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3. Results: TV vs TV+L0 decomposition

T

Nois data CNE/D ‘ ' TV denoising




3. Results: TV vs TV+L0 decomposition

Strong scatterers ug Homogeneous regions ugy




Results: TV vs TV+L0 decomposition

noisy data

Image decomposition:

@ suppresses the bias on
strong scatterers
(i.e., loss of contrast
and suppression of
point-like objects)

TV denoinsing

@ better preserves
resolution (strong
scatterers do not
spread)

TV+L0 decomposition
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noisy data

> Image decomposition:
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point-like objects)
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Results: TV vs TV+L0 decomposition

noisy data

Image decomposition:

@ suppresses the bias on
- strong scatterers
(i.e., loss of contrast

o
£ .
£ and suppression of
e . :
3 point-like objects)
[«
@ better preserves
comparable resolution (strong
. smoothing
of homogenous scatterers do not
areas spread)

TV+L0 decomposition
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3. Conclusion

@ The prior model benefits from image decomposition

@ Decomposition choice: a component with bounded variations
ugy and a sparse component ug

@ Minimization of TV+LO0 is challenging but exact discrete
minimization is possible with graph-cuts

@ A drawback of this minimization approach is its memory cost:
O(number of pixels x number of quantization levels)

@ More elaborate speckle noise models (strong scatterer +
random phasors) can be applied with the proposed
decomposition for SAR image denoising (— Rice distribution,
see paper)
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Questions?

loic.denis@cpe.fr

the slides can be downloaded from my homepage
(http://www-obs.univ-1lyonl.fr/labo/perso/loic.denis/)
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