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Context

Synthetic aperture radar (SAR) images denoising:

= ×

noisy data noise scene
v n u

noise / signal separation using a variational approach:
recover scene u as the minimizer of Edata(u, v) + Ereg(u)

Radar scene distinctive feature: strong scatterers (very bright dots)

Q: How to model such scenes?
Q: How to compute the corresponding minimizers?
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Overview

1. TV+L0 image decomposition models

2. Exact discrete minimization by graph-cuts

3. Results and discussion



1. Denoising and image decomposition

Total variation denoising: û = arg min
u

Edata(u, v) + Ereg(u)

Ereg(u) = TV(u) :=
∫ √

(∇xu)2 + (∇yu)2 dx dy

preserves sharp boundaries
cartoon-like images (staircasing effect), favors larger regions

Image decomposition: e.g., Edata(u − v) = ‖u − v‖1

= +

image texture geometry
(illustration from [Yin, Goldfarb & Osher 2005]) 2 / 10



1. Denoising and image decomposition

TV denoising vs TV+L0 image decomposition:
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2. Energy minimization problem

̂(uBV,uS) = arg min
(uBV,uS)

Edata(v ,uBV,uS) + Ereg(uBV,uS)
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2. Energy minimization problem

̂(uBV,uS) = arg min
(uBV,uS)

Edata(v ,uBV,uS) + Ereg(uBV,uS)

1. Image formation model

Assumption: separable likelihood
(no blurring, uncorrelated noise)

Edata =
∑

k − log p(vk |uBVk , uSk)

Speckle noise → Rayleigh distribution:

Edata =
∑

k
vk

2

(uBVk+uSk)
2 +2 log(uBVk+uSk)

Positivity constraints:

∀k , uBVk > 0 and uSk ≥ 0
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2. Energy minimization problem

̂(uBV,uS) = arg min
(uBV,uS)

Edata(v ,uBV,uS) + Ereg(uBV,uS)

2. Image decomposition model

Prior model:
decomposition into sparse and
bounded variations components

Ereg = βS L0(uS) + βBV TV(uBV)
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2. Energy minimization problem

̂(uBV,uS) = arg min
(uBV,uS)

Edata(v ,uBV,uS) + Ereg(uBV,uS)

Minimization problem

Edata is non-convex (quasi-convex)
Ereg is non-convex (due to L0 term)

→ the problem is non-convex

Variable coupling:
- uBV and uS are coupled
- uBV is spatially coupled

global minimization is hard. . .
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2. Energy minimization problem: reformulation

1 Consider uBV fixed. The restricted problem is spatially separable:

u?
S(uBV) = arg min

uS

Edata(v ,uBV,uS) + βS L0(uS)+βBV TV(uBV)

The problem reduces to a 1D problem per pixel (easy).

2 The original problem can be reformulated with uBV only:

arg min
uBV

Edata(v ,uBV,u?
S(uBV)) + βS L0(u?

S(uBV)) + βBV TV(uBV)

which is of the form:

arg min
uBV

∑
k fk(uBVk) +

∑
(k,l) gkl (uBVk , uBVl )

3 Exact discrete minimization is possible with a maximum-flow /
minimum s-t cut algorithm, due to the structure of the problem:
it is the sum of a separable and a convex term involving only first-order
cliques.
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2. Energy minimization problem: graph-cuts methodology
1 The pixel grid is mapped to a graph with two terminal nodes:

2 A minimum s-t-cut is computed:

3 The cut is interpreted as a solution of the original problem:
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2. Energy minimization problem: graph construction

arg min
uBV

Edata(v ,uBV,u?
S(uBV)) + βS L0(u?

S(uBV)) + βBV TV(uBV)

- uBV is decomposed into its level sets
- each level is represented by a layer of the graph
- vertical arcs going downstream represent
Edata(·) + βS L0(·)
- horizontal arcs represent βBV TV(uBV)
- positivity is naturally enforced
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3. Results: TV vs TV+L0 decomposition

Noisy data c©CNES/DGA TV denoising
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3. Results: TV vs TV+L0 decomposition

Strong scatterers uS Homogeneous regions uBV
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3. Results: TV vs TV+L0 decomposition

Image decomposition:
suppresses the bias on
strong scatterers
(i.e., loss of contrast
and suppression of
point-like objects)
better preserves
resolution (strong
scatterers do not
spread)
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3. Conclusion

The prior model benefits from image decomposition

Decomposition choice: a component with bounded variations
uBV and a sparse component uS

Minimization of TV+L0 is challenging but exact discrete
minimization is possible with graph-cuts

A drawback of this minimization approach is its memory cost:
O(number of pixels × number of quantization levels)

More elaborate speckle noise models (strong scatterer +
random phasors) can be applied with the proposed
decomposition for SAR image denoising (→ Rice distribution,
see paper)

10 / 10



Questions?

loic.denis@cpe.fr

the slides can be downloaded from my homepage
(http://www-obs.univ-lyon1.fr/labo/perso/loic.denis/)
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