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SAR Image Regularization With Fast Approximate
Discrete Minimization
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Abstract—Synthetic aperture radar (SAR) images, like other
coherent imaging modalities, suffer from speckle noise. The pres-
ence of this noise makes the automatic interpretation of images
a challenging task and noise reduction is often a prerequisite for
successful use of classical image processing algorithms. Numerous
approaches have been proposed to filter speckle noise. Markov
random field (MRF) modelization provides a convenient way to
express both data fidelity constraints and desirable properties of
the filtered image. In this context, total variation minimization
has been extensively used to constrain the oscillations in the
regularized image while preserving its edges. Speckle noise follows
heavy-tailed distributions, and the MRF formulation leads to a
minimization problem involving nonconvex log-likelihood terms.
Such a minimization can be performed efficiently by computing
minimum cuts on weighted graphs. Due to memory constraints,
exact minimization, although theoretically possible, is not achiev-
able on large images required by remote sensing applications.
The computational burden of the state-of-the-art algorithm for
approximate minimization (namely the -expansion) is too heavy
specially when considering joint regularization of several images.
We show that a satisfying solution can be reached, in few iterations,
by performing a graph-cut-based combinatorial exploration of
large trial moves. This algorithm is applied to joint regularization
of the amplitude and interferometric phase in urban area SAR
images.

Index Terms—Combinatorial optimization, denoising,
graph-cuts, Markov random field (MRF), minimization methods,
speckle, synthetic aperture radar (SAR), total variation (TV).

I. INTRODUCTION

T HERE are nowadays many synthetic aperture radar
(SAR) satellite sensors (EnviSat, Radarsat, ALOS, etc.)

providing a huge amount of SAR images. The popularity of
such sensors is linked to their all-weather and all-time capa-
bilities, combined with their polarimetric and interferometric
potential. The interferometric data, which are phase difference
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images, give either elevation or movement information. The
launch of new sensors with improved resolution in 2007 (Ter-
raSAR-X [47] and CosmoSkyMed [39]) opens new fields of
applications. Particularly, the computation of digital elevation
models (DEM) becomes feasible with metric interferometric
images, specially when tandem configurations will be available.
These new data will contribute to urban monitoring which is
an important issue for governmental agencies (risk analysis,
disaster management, environmental protection, urban develop-
ment planning, ). In this paper, we are interested in filtering
of SAR images for the the purpose of building delineation to
perform 3-D reconstruction.

However, SAR images are difficult to interpret not only
with automatic image processing tools but also by human
interpreters. This is mainly due to two specificities of the SAR
system: first, SAR is coherent imagery and, therefore, subject
to the speckle phenomenon; secondly, due to the microwave
propagation, images are distance sampled leading to strong
geometrical distortions.

Speckle is due to the interferences of waves reflected by many
elementary reflectors inside a resolution cell. Although speckle
has been extensively studied and is well modeled in some partic-
ular cases [23], [28], [30], speckle reduction remains one of the
major issue in SAR image processing. Many filters have been
proposed in the last twenty years and they can be classified in
two categories: filters without explicit scene modeling based on
minimum mean square error, and those with the explicit assump-
tion of a scene distribution based on the maximum a posteriori
(MAP) or maximum likelihood criterion.

The first family contains the famous Lee [35], Kuan [34],
and Frost [19] filters. More recent papers work in the wavelet
domain [1]. In the second family, scene distribution hypoth-
esis have lead to different filtering: Gaussian [33], Gamma [40],
Fisher [42]. More elaborated models assuming that the scene is
a Gaussian Markov random field [53] or establishing the prob-
ability density functions of the wavelet coefficients to do MAP
filtering [18] have been developed.

Independently of the chosen filtering formula, parameter esti-
mation is a crucial point. Indeed, the number of samples should
be as big as possible, whereas the local stationarity should be
verified inside the processing window. To solve this dilemma,
many approaches have been proposed: gradient detection inside
the analysis window [36], growing window strategy [43], [52],
[54], feature (line, point, edge) detection [40]. Two excellent re-
views with comparisons and improvements of many SAR filters
can be found in [38] and [51].

One of the main interest of the Markovian framework is its
ability to take into account both local non stationarity, specially
the presence of edges, and a data acquisition model. Generally,
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the filtering corresponds to the computation of the MAP esti-
mator. It consists of the minimization of an energy combining
two types of information: a data driven term and a regulariza-
tion term [22]. The first one is given by the physical mecha-
nisms of radar processing. The second one reflects our knowl-
edge about the reality of the imaged scene (also called “prior”
term in the following). In the case of urban areas, many sharp
discontinuities exist either in the amplitude image or in the in-
terferometric one. Many models/priors have been investigated
to cope with image discontinuities. There is a family of explicit
edge processes [11], [22] and a family of well chosen func-
tions which naturally preserve discontinuities [6], [21]. More
recently, since the seminal work of [48], a great interest has been
given to the minimization of total variation (TV) [12], [15], [41],
[44], [45] due to its edge preserving behavior while still leading
to a convex optimization problem. Various multiplicative noise
models using TV have been proposed [2], [17], [49].

Actually, the choice of the regularization function is closely
linked to the optimization problem. Indeed, one of the main lim-
itation to Markov random fields (MRF) in image processing
was the optimization step. Although simulated annealing [22]
has excellent theoretical performances, in practice, the compu-
tational burden might be very heavy. Deterministic approaches
such as iterated conditional modes [4] often converges toward a
local minimum which can be far away from the exact solution.
Thanks to graph-cut methods, i.e., computation of a s-t min-
imum cut or by duality a maximum flow in a graph, exact dis-
crete optimization schemes have been developed in some spe-
cific cases.

Such a combinatorial method has first been proposed in [46]
for minimizing binary a class of energies. Then, Greig et al.
[24] have used this approach to the study the behavior of the
Ising model for binary image restoration. More recently, it has
been shown in [32] that this approach works for any binary field
whose prior is composed of pair-wise or triple-wise binary sub-
modular functions. The case of nonbinary fields has been ad-
dressed by few works. In [8], an excellent approximation re-
sult is presented where the prior corresponds to a semi-metric.
Ishikawa has proposed a framework for exact optimization of
convex regularization functions in the gray-level case [27]. With
a different graph but the same size as the one of Ishikawa, exact
optimization schemes for convex or levelable priors are also de-
fined in [16]. In [14], it is shown that the approach of [8] con-
verges toward a global minimizer for a subclass of non convex
energies.

For convex energies, iterative approaches that allow to build
much smaller graph are proposed in [5], [13], and [31]. The par-
ticular case of the TV minimization has been addressed in [10]
and [16]. Note that all of the above approaches are due to the ef-
ficient maximum flow/s-t minimum cut algorithm described in
[7].

The contributions of the paper are the following: We propose
a new fast algorithm for SAR scene reflectivity restoration and
also for the joint regularization of amplitude and interferometric
phase images. We have chosen to consider TV prior which is
well adapted for urban areas. As will be seen in the next part,
the data driven term is not convex. In this case, either [16] or
[27] could provide exact optimization algorithms but at the price

of a huge memory space due to the graph size. The -expansion
algorithm of [8] could also provide an approximate solution, but
with a quite heavy computational burden. A new algorithm is
presented providing a fast and approximate solution and able to
deal with joint regularization of amplitude and phase image. The
graph is of similar size to the one used to perform -expansions,
but based on a different principle. The obtained local minimum
has been found satisfying in different practical cases. Empirical
studies have shown that the minimum is very close to the global
minimum computed by [16] with a great improvement of the
needed memory space and of computation time.

The remainder of the article is organized as follows. In Sec-
tion II, the MRF model is presented, and particularly the data
driven term in the case of SAR and InSAR images is detailed.
Section III is dedicated to the presentation of our optimization
algorithm after recalling other graph-cut-based methods. In Sec-
tion IV, the model and minimization algorithm are compared to
other methods. They are then applied to real InSAR images in
the context of 3-D reconstruction in urban areas. Section VI con-
cludes about the proposed method.

II. MRF MODEL

A. MRF Framework

It is assumed that an image is defined on a finite discrete lat-
tice and takes values in a discrete integer set .
We denote by the value of the image at the site and by

the related clique of order two. Given an observed image ,
a Bayesian analysis using the MAP criterion consists of finding
a restored image that maximizes . It
can be shown under the assumption of Markovianity of and
with some independence assumption on conditionally to

that the MAP problem becomes an
energy minimization problem

with
the opposite of the log-like-

lihood and a function modeling the prior chosen for the
solution.

B. SAR and InSAR Image Formation

1) Distribution of the Amplitude: The synthesized radar
image is complex-valued. Its amplitude is very noisy due
to the interferences that occur inside a resolution cell. A clas-
sical model for speckle was developed by Goodman [23] and
is valid for “rough” surfaces (the roughness being considered
according to the wavelength of the sensor). Under this model,
the amplitude of a pixel follows a Nakagami distribution
depending on , the square root of the reflectivity [23]

(1)

with the number of looks of the image (i.e., number of inde-
pendent values averaged). For single-look images , the
density function simplifies to Rayleigh law.

This likelihood leads to the following energetic term:
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Fig. 1. Likelihood model for SAR amplitude. Continuous line: probability density function (a) and corresponding energy (b) followed by a single-look amplitude
image �� � ���. Dashed-line: Convex approximation. The convex approximation can not model the “heavy tail” that characterizes speckle noise.

represented in Fig. 1 (continuous line).
This energy is not convex with respect to ( is the fixed

observed amplitude value), contrary to the quadratic energy that
arises from a Gaussian likelihood assumption. A convex approx-
imation is drawn with a dashed line in Fig. 1. For display pur-
poses, the corresponding probability density function (pdf) has
not been normalized so that it superimposes to the true pdf. It is
clear from the figure that such an approximation fails to model
the heavy tail (i.e., slowly decreasing pdf) which is typical of
speckle noise.

2) Distribution of the Interferometric Phase: In the case
of SAR interferometric data, the interferometric product is
obtained by complex averaging of the hermitian product of the
two SAR images and accurately registered

with the number of pixels of the averaging window centered
on site . The interferometric phase is given by the argument
of . The coherence is given by and measures the
sample correlation between the two SAR images. It is an indi-
cator of the interferometric phase reliability.

The pdf of the phase can be written as an expression implying
hypergeometric functions [37]. A good approximation is given
by a Gaussian model

(2)

The standard deviation at site is approximated by the
Cramer–Rao bound

(3)

For low coherence areas (shadows or smooth surfaces, denoted
“Shadows” in the following), this Gaussian approximation is
less relevant and a uniform distribution model is better

(4)

This leads to the following energy:

if Shadows

otherwise

The energy is convex. The variance dividing the
quadratic term is a function of the coherence of the pixel.
Although this coherence could also be considered as a random
field to regularize, it will be considered as a fixed field in the
following.

C. Prior Model

As said in the introduction, the TV regularization prior is well
adapted when dealing with strong discontinuities. Besides this
prior has good properties for minimization since it is a convex
function. The energetic term corresponding to the discretization
of TV can be written [15] as follows:

with for the 4-nearest neighbors and for
the four diagonal ones. We will not explicitly write the weights

in the following equations.
For the separate regularization of amplitude or phase images,

we have the following energies to minimize:

(5)

(6)
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We consider in this paper the case of aerial high resolution
images of urban areas. The elevation range is contained within
a fringe so we do not have to handle the problem of phase un-
wrapping. Then, contrary to other SAR configurations, we do
not have to take the wrapping into account in the regularization
term which simplifies greatly the regularization problem. Joint
phase regularization and unwrapping has been recently studied
in [5] using a graph-cut approach.

The phase and amplitude information are hopefully linked
since they reflect the same scene. Amplitude discontinuities are,
thus, usually located at the same place as phase discontinuities
and conversely. We propose in this paper to perform the joint
regularization of phase and amplitude. To combine the discon-
tinuities a disjunctive operator is chosen.

Note that the MAP estimates are not modified if the energies
of (5) and (6) are respectively divided by non-null terms and

. Since the TV of the amplitude and the phase are of the
same order, this leads to a normalization of the likelihood ener-
gies. The joint prior model is defined by

(7)

with a parameter that can be set to 1, and otherwise accounts
for the relative importance given to the discontinuities of the
phase or of the amplitude .

The global joint energy term is then

(8)

Shadow Areas: The regularized fields and at sites lo-
cated inside the detected shadow areas Shadows are governed
by the regularisation term. With the prior term defined in (8),
the phase for that minimizes the energy corre-
sponds to an interpolation of the phase value at the surrounding
sites. Shadow areas, however, are most of the time at ground
level and not at an intermediate height between the top of the
structure that creates the shadow and the ground at the shadow
end. A modified regularization term that better describes this
prior knowledge is, therefore, used for cliques involving one or
both site(s) inside the shadow regions

with defined as follows.
i) If Shadows and Shadows

ii) If Shadows and Shadows and

iii) If Shadows and Shadows and

iv) If Shadows and Shadows

The cases where and are treated
in a symmetrical manner. Outside shadow areas (case i), the
regularization term is the same as previously. To limit the ef-
fect of a given shadow area on the regularization of the ampli-
tude, we independently regularize phase and amplitude in and
at the limit of the shadows (cases ii to iv). To force the regu-
larized phase inside a shadow to follow ground level, we pe-
nalize more heavily over-estimation (case iii) than under-esti-
mation (case ii). Finally, a quadratic constraint (case iv) enforces
a flat/smooth ground inside a shadow area. Note that in each case
(i to iv) the prior term is convex and so is the prior
energy . The convexity of the prior energy is essential to
apply the minimization algorithm described in Section III.

D. Energy Minimization Problem

As said in the introduction, graph-cut-based approaches are
very efficient methods for MRF optimization. Nevertheless,
only certain classes of energies can be exactly minimized.
We briefly describe here the algorithms which can be used to
minimize energies of (5), (6), and (8).

1) Exact Minimization: First, concerning amplitude data,
two graph-cut-based algorithms have been proposed to mini-
mize energies such as (5).

The first one has been developed by Ishikawa [27]. It is able
to handle any kind of data driven term and convex regulariza-
tion. The graph is constituted by nodes (a node for each
pixel and grey level) plus two terminal nodes. In the case of TV
regularization, there are in 4 connexity (resp. in
8 connexity) pairs of directed edges connecting nodes between
successive levels for each pixel, and between neighboring pixels
for a given level. For remote sensing application, the graph size
is prohibitive since the full graph must be stored in memory.

The second method has been proposed in [16]. It is based on
the notion of levelable energies, which means that the energy
can be written as a sum on the level sets of . Since the convexity
of the posterior energy is not guaranteed in our model (due to
the nonconvex log-likelihood of the amplitude), a fast algorithm
based on a scaling search can not be applied [15]. In this case, a
much wider graph linking the different level sets must be built
whose size is similar to the one of Ishikawa and still prohibitive
for remote sensing applications.

The problem is easier for phase images (6) since the data
driven term is convex. In that case, a fast algorithm is proposed
in [15]. It consists in solving a set of binary problems associated
to the level sets. A divide and conquer strategy permits to build
a very fast algorithm.

Concerning the joint optimization of phase or amplitude,
these algorithms have no straightforward extension to vectorial
cases.

2) Approximate Minimization: Since TV is a metric, -ex-
pansion algorithm proposed in [8] can be applied. Starting from
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TABLE I
COMPARISON OF GRAPH-CUTS-BASED TECHNIQUES FOR MINIMIZATION OF MRF ENERGIES WITH A NONCONVEX DATA TERM AND A CONVEX REGULARIZATION.

EXPRESSIONS ARE GIVEN FOR A � PIXELS IMAGE WITH � POSSIBLE LABELS (8 CONNEXITY NEIGHBORHOODS)

a current solution, this algorithm proposes to each pixel either to
keep its current gray-level, or to take value as new gray-level.
The energy associated to this movement is minimized using a
graph-cut. The succession of -expansions other all possible
values in until convergence leads to a solution which is shown
to be close to the global minimum. This approach has been
shown in [14] to converge to a global minimizer when data fi-
delity is convex. If the set of all possible values can be large in
the case of single image regularization, its size becomes pro-
hibitive when joint regularization is considered. We suggest in
the next section a faster algorithm which is more suitable when
large images or joint regularization are considered.

Table I summarizes the graph size and number of cuts re-
quired by -expansion, exact minimization and the proposed
algorithm. Existing algorithms can not satisfactorily handle (in
terms of speed and general applicability) vectorial data.

III. PROPOSED ALGORITHM

Minimizing a nonconvex energy is a difficult task as the al-
gorithm may fall in a local minimum. Algorithms such as the
Iterated Conditional Modes require a “good” initialization and
then performs local changes to reduce the energy. Graph-cut ap-
proach provides a way to explore a combinatorial set of changes
involving simultaneously all pixels. Following [8], we denote
such changes large moves. Instead of allowing a pixel to either
keep its previous value or change it to a given one ( -expan-
sion), we suggest that a pixel could either remain unchanged or
its value be increased (or decreased) by a fixed step. Such an ap-
proach has first been described independently in [5], [13], and
[31] and applied recently with unitary steps in [5]. We, however,
use these large moves in a case of nonconvex data term. The trial
steps are chosen to perform a scaling sampling of the set of pos-
sible pixel values. We express the algorithm in the general case
of joint regularization.

We describe in the following subsections the set of large
moves considered, the associated graph construction and give
the average complexity of the resulting algorithm.

A. Local Minimization

First, let us introduce the set of images that lie within a single
move in our algorithm. For the sake of generality, we denote by

the vectorial field arising by associating to each component
one of the images to jointly regularize. Then

is the set of images whose pixel value is either unchanged or
increased by step . We define the “best” move
as the one that minimizes the restriction of the energy to the set

The restriction of the energy to corresponds to an
energy involving only the binary variables . The “best”
move is then obtained by finding the optimal binary variables

(9)

with and respectively the opposite of the log likelihood and
the prior energy as defined in the general MRF formulation in
Section II–A.

Let us define and
to emphasize that,

for a given step , the move depends only
on those binary variables. According to [32], an energy of
binary variables arising from a first-order Markov model can
be minimized by computing a minimum cut on a related graph
provided its prior energy satisfies the following submodular
property:

To compute the “best” move using a s-t minimum-cut algorithm,
the restriction of the prior energy to must
be submodular. The prior energy must, therefore, verify for
all and all

(10)

Note that in most cases, the prior model depends
only on the difference . This is the case in the model
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described in Section II-C. For such prior models, condition 10
becomes

which is verified by any convex prior .
In conclusion, the local problem of finding the vectorial field

located within a single move (i.e., )
that minimizes the posterior energy can be ex-
actly solved by computing a minimum cut on a graph (described
in next paragraph) provided that the regularization potential is
convex and depends only on the difference .

The model we described in Section II consists of the sum of a
nonconvex likelihood term and a convex prior term. The above
property, therefore, holds for this model and we give in the next
paragraphs an algorithm for approximate global minimization
based on exact local minimizations performed using graph-cuts.

B. Graph Construction

We build a graph , following the method of [32], to
minimize the restriction of the energy to allowed moves of step

.
The graph is directed, with non-negative edge

weights and two terminal vertices: the source and the sink.
The graph structure and the edge weights are chosen such that
any cut1 has a cost (i.e., sum of the cut edges capacities) cor-
responding to the energy to minimize. We create a vertice for
each site , all connected respectively to the source and the sink
through two edges with capacity (resp. ). Finally, each
clique gives rise to an edge with capacity (Fig. 2).

The capacities are set according to the additive method de-
scribed in [32]. The first term in (9) is represented by the weights

and

To this weights are added the weights (see notations in
Fig. 2) representing each clique [second term of (9)]

1A cut is a partition of the vertices into two disjoint sets, one including the
source, and the other the ink.

Fig. 2. Graph construction for local minimization. Source and sink nodes are
drawn as black circles

C. Approximate Global Minimization

When nonconvex data terms such as Nakagami law described
in Section II-B1 are considered, the global minimization
problem can not be exactly solved without considering each
possible configuration (i.e., building a huge graph). On the
other hand, when all terms are convex, it has been proven in
[13] that a succession of local minimizations leads to the global
minimum. An exploration based on different scalings of the
step is then suggested to speed up convergence.

We follow here an heuristic method that combines the exact
determination of the best moves, with no guarantee on how close
to the global minimum we get. Section IV will illustrate on some
simulated and real data that the obtained results are satisfying in
practice with a speed and memory cost adequate for application
use.

In one dimension, a scaling search is performed by looking
for the best move with steps and for

from 1 to the desired precision (i.e., quantization level). In
dimensions, there are vectorial steps to consider for
a given step size

The joint-regularization algorithm is summarized here

1: for all do
2:
3: end for
4:
5: for to precision do
6:
7: for all do
8:
9:

10: end for
11: end for

Line 8 represents the exact binary energy minimization obtained
by computing a minimum cut on a graph build according to Sec-
tion III-B. Note that if we perform unitary steps
until convergence at the termination of our algorithm, exact min-
imization is then guaranteed for convex energies [13].



1594 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 7, JULY 2009

D. Complexity

The total number of cuts required by the algorithm depends
on the precision chosen and on the number of jointly regular-
ized images . For a precision corresponding to the quantiza-
tion level, the number of cuts is . Joint reg-
ularization of the phase and the amplitude with 8-bit precision
therefore requires 64 cuts, while the regularization of amplitude
only or phase only is obtained after 16 cuts, to compare with re-
spectively 65536 and 256 cuts with the -expansion algorithm
(see Table I).

The algorithm we used to compute the cuts is Kolmogorov’s
freely available implementation of the augmenting path method
described in [7]. For a nodes and edges graph, this algo-
rithm has a high worst case complexity: , with
the cost of the cut. However, this algorithm performs well in
practice for cuts arising from computer vision problems [7].
The complexity to expect on real data seems to be bounded
by that of push-relabel algorithm , which is the
bound adopted in [5]. We will give the running times necessary
for image regularization in our experiments conducted in Sec-
tion IV.

E. Hyper-Parameter Tuning

Hyper-parameter tuning is an essential issue as the regular-
ized solution can be far from the true image if the hyper-pa-
rameters are incorrectly set. Depending on the target application
(for example image enhancement prior to human photo-inter-
pretation, or fully automatic image analysis), the optimal value
of the hyper-parameter may be different. The range of possible
values depends both on the log-likelihood term and on the prior
term and is very large. In the case of joint regularization, the
hyper-parameters can differ by several orders of magnitude. An
automatic method for adequate hyper-parameter estimation is,
therefore, necessary.

Considerable effort has been devoted to hyper-parameter esti-
mation [20], [29], [55]. One of the possible methods to perform
hyper-parameter tuning is the analysis of the so-called -curve
[26]. This curve is the graphical representation of the regular-
ization energy term with respect to the likelihood energy term.
The corner of the curve corresponds to a good trade-off be-
tween under-regularization (steep part of the curve, where the
regularization term can be largely improved with minor likeli-
hood modification) and over-regularization (slowly varying part
of the curve, where the regularization term can no longer be im-
proved, whatever the likelihood price). Note, however, that the

-curve method is known to fail in some cases [25]. We suc-
cessfully apply this method on simulated and real data in the
next section.

IV. EXPERIMENTS AND ALGORITHM COMPARISON

A. Amplitude Regularization

We evaluate here both the algorithm speed and the quality of
the minimization on a synthetic image.

a) Algorithm Comparison: Fig. 3 compares the conver-
gence of the ICM, -expansion and the proposed algorithm on
a simulated noisy image. The ground truth image consists of 4

regions denoted a, b, c, and d in Fig. 3. Each region has a con-
stant gray level (respectively 20, 40, 60, 80). The graph displays
the energy decrease as a function of elapsed time computed on
a laptop with a 2.4-GHz Intel Core2 processor. The ICM is an
example of an algorithm that involves local moves. It reaches
convergence in about 30 s. Upon convergence, the obtained
regularized image is far from the ground truth image and from
the global minimum. Each iteration, depicted by a triangle on
the graph, consists of a complete sweep of the image.
The -expansion converges in 2 iterations for that example
image (about 22s). The regularized image is close to the ground
truth image, although a slight loss of contrast is visible. An
iteration, also depicted by a triangle, consists of performing
expansion moves for all possible labels. The energy of the
image obtained at convergence is slightly less than that of
the ground truth image. Ideally, the global minimum of the
MRF model should correspond to the ground truth image. As
illustrated with this example, this is not the case and the model
minimization leads to a bias (further discussed in paragraph c).
The proposed algorithm gives an image almost identical to that
obtained with -expansion in less than 3 s. Its energy is also
less than that of the ground truth image and slightly greater
than that obtained with the -expansion algorithm. Although
the -expansion and the proposed algorithm lead to a local
minimum, the obtained regularized images are satisfactory. As
the energy of these local minima is comparable to that of the
ground truth image, these approximate minimization can be
considered sufficient.

b) Automatic Hyper-Parameter Estimation: The -curve
computed for values in the range is displayed in Fig. 4.
As expected, the regularization term decreases as is increased.
As for the likelihood term, it increases with . The two ends of
the -curve correspond to (no regularization, null like-
lihood term) and for which the regularized image is
constant (null regularization term, maximum likelihood term).
It has been empirically shown in [26] that the corner (i.e., max-
imum curvature point) of the -curve gives a good regulariza-
tion value . We have used the triangle method described
in [9] to find automatically (depicted by a black triangle
in Fig. 4). It seems that the use of a log-log scale for -curve
corner detection as advised in [9] is less relevant when using
TV regularization than it is for quadratic regularization. We,
therefore, used linear scales as shown in Fig. 4. Three regu-
larized images were computed for values, respectively less
(sub-figure ), equal (sub-figure ), or greater (sub-figure )
than . To enhance the details, we display the norm of the
gradient of the regularized images (black means a high gradient
norm, white is for null gradient) instead of the images them-
selves. Under- and over-regularization clearly correspond re-
spectively to sub-figures and . The leads to a sat-
isfying regularized image. The loss of contrast is visible in the
change of gradient magnitude scale and increases with the value
of the regularization hyper-parameter .

c) Bias/Variance Tradeoff: Table II compares denoised
images obtained with different methods: multilook filtering
(averaging of the squared amplitude), Lee filtering [35], Wu’s
adaptive windows method [43] and the proposed regularization
method. The multilook and Lee filters are computed with a
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Fig. 3. Convergence comparison of the iterated conditional modes (ICM), �-expansion and the proposed algorithm.

Fig. 4. Automatic hyper-parameter estimation: �-curve representation �� � ��� �� and corresponding � values. The detected �

value is displayed with a black triangle. (�-curve computation took less than 1 minute on this 256� 256 image). Magnitude of the gradient of three images
regularized with different � values are displayed to illustrate three different regions of the �-curve.�� � � ������� � � � � �����	 � � �.



1596 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 7, JULY 2009

TABLE II
BIAS/VARIANCE TRADEOFF: COMPARISON WITH SOME OTHER SPECKLE REDUCTION TECHNIQUES

11 11 window. All methods are applied to the noisy image
shown in Fig. 3. The bias , the mean square error
(MSE) and the standard deviation
are computed2 for the four homogeneous regions a, b, c, and
d. The proposed algorithm leads to images with very low
variance (last column). Small regions with high reflectivity
suffer, however, from a contrast loss (negative bias). This bias
can be lowered to levels comparable to that of classical filters
for under-regularized images at the cost of an increase of the
variance. The MRF model considered penalizes variations and
can, therefore, lead to images with uniform (flat) regions. This
feature is of special interest in the context of urban areas. The
bias that appears has been previously noticed and studied in the
case of quadratic data terms (Gaussian likelihood) [41], [50].
We will show in Section IV-B and Fig. 7 that the contrast loss
is limited when using joint regularization with the prior model
designed in Section II.

d) Level-Dependent Smoothing Effect: It can be noticed
from Fig. 4 that the image regions with high amplitude values
tend to be smoothed first, while the noise in the low ampli-
tude regions remains nearly unmodified for small values of the
hyper-parameter ( as is the case for subfigure ).
This can be intuitively understood by considering that speckle
noise is multiplicative. Therefore, if we were to choose between
two regularized values of equivalent likelihood in regions with
different mean amplitude levels, the choice that would decrease
most the global energy would be that which reduces the varia-
tions in the high amplitude region.

To study into more details this phenomenon, let us consider
a constant region with amplitude . Due to the presence of
noise, amplitude is observed instead of ( is considered
to be a single-look image here: ). The probability density
function of is given by (1). We are considering the filtered
image obtained by the MAP criterion using model of (5). Let
us set the regularized values of the neighbors of site to
the exact value (i.e., ). We shall
now consider the possible regularized values at site . In this
specific case, depends only on the noisy value and the
true value . The remaining L1 error after regularization is

. The expectation of this error is obtained by
summing over all possible values

(11)

2Region “a” has been reduced to suppress boundary effects.

Fig. 5. Expectation of the L1 error between the regularized value �� and the
(true) background value �� as a function of �� . The curves were obtained
for different regularization levels �. The limiting case � � � exhibits a linear
part that illustrate the multiplicative nature of the noise. For high values of ��
truncation effects dominate the linear evolution (see text). When considering
increasing � values, one can notice that the error is reduced more efficiently
when the background level is high.

with obtained by minimization

of the local energy3

Fig. 5 represents the mean error as a function of the
background level for given regularization values . These
curves have been computed for integer values of in

. Noisy amplitudes have been sampled with 0.1 steps
from 1 to 500 as the amplitude in SAR images is measured
with a high dynamic (floating point values). For each triplet

has been computed by searching for the min-
imum argument of among integer values in range . By
restricting the possible values to the range , we introduce
boundary effects. High values of lead to noisy amplitudes

for which the energy is minimized beyond the upper
bound 255. Restricting to lie within the range moves
the regularized values toward the true amplitude . The re-
sulting error is, therefore, reduced, as can be noticed on the dif-
ferent curves for high values of .

3Defined here considering a 4 connexity neighborhood.
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Fig. 6. Joint regularization of InSAR images (1200� 1200 pixels): (a) noisy amplitude; (b) noisy phase; (c) and (d) are respectively the jointly regularized am-
plitude and phase images for � � ����� and � � ����� �� determined automatically with �-curves.

The limiting case with no regularization corresponds
to maximum likelihood estimation . The curve is
that of a linear function for values where the boundary ef-
fects are negligible. This is the illustration of the multiplicative
nature of speckle noise. As the regularization hyper-parameter

is increased, the linear dependency is not verified any more.
The noise is then no more multiplicative and it can be observed,
in agreement with our remark about Fig. 4 results, that the noise
in high amplitude regions (i.e., high values) is regular-
ized more efficiently than that in low amplitude regions. This is
related to the prior model we have chosen. For the application
under consideration (recovery of urban structures), we find this
model well adapted. For other purposes such as small targets de-
tection in low signal-to-noise images, this model might be less

suitable due to the risk of over-regularizing high-amplitude tar-
gets.

B. Joint Regularization of InSAR Images in Urban Area

We now consider joint regularization on high-resolution
data acquired over the city of Toulouse, France. The images
shown in Fig. 6(a) and (b) are 1200 1200 pixels extracts from
single-pass interferometric SAR images acquired by RAMSES
(ONERA SAR sensor) in X-band at sub-metric resolution.

The amplitude image is a 2-look image obtained after aver-
aging the intensity of the two images of the interferometric pair.
The interferogram has been computed on a 3 3 window and
the coherence over detected shadow-areas set to 0.
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Fig. 7. Illustration of the use of joint regularization to preserve small objects. A magnified portion of images displayed in Fig. 6, centered on a street, shows small
round objects that corresponds to streetlights. They are noticeable both in amplitude (larger reflectivity than the ground) and phase (top of the streetlight is higher
than surrounding ground). When independent regularization of phase and amplitude is performed, the true phase is lost for some of the streetlights that are merged
with the ground by the regularization process. The streetlights are correctly preserved when regularization is jointly performed (bottom row of images).

We have set hyper-parameter to 1 and have estimated iter-
atively the values of and using 1-D -curves: has
been estimated considering an independent model. Then,

has been estimated with set to and set to
. The values and have then been refined re-

spectively into and given

(resp. ). Although this iterative re-

finement process could be carried on, the values and
already provide satisfying regularization results. We obtained

and for the images shown
in Fig. 6(a) and (b). The jointly regularized images are dis-
played in Fig. 6(c) and (d). The regularization process (given
the hyper-parameter values) took less than 3 min with our im-
plementation of the algorithm of Section III. The hyper-param-
eters were determined using a 232 232 pixels sub-image as
this step requires many regularization computations. Note that
the hyper-parameters differ by four orders of magnitude, which
would have made their manual tuning inconvenient. More subtle
approaches have also been suggested to determine multiple reg-
ularization parameters (see [3]).

From the regularization results of Fig. 6, it can be noticed
that the noise has been efficiently reduced both in amplitude
and phase images. The sharp transitions in the phase image that
correspond to man-made structures are well preserved.

Joint regularization gives more precise contours than inde-
pendent regularization as they are co-located from the phase
and amplitude images (minimum cost images have transitions
that occur between the same neighboring pixels). Small objects

also tend to be better preserved by joint-regularization as illus-
trated in Fig. 7. In this figure, an excerpt showing a portion of
streets is presented. Four dots (roughly vertically aligned) are
visible in the noisy phase image and less clearly in the amplitude
image. They correspond to the top of streetlights that is higher
than the surrounding ground. In the independently regularized
phase image , some streetlights have nearly disappeared (see
also the gradient image shown to ease visualization). In
the jointly regularized phase image the four streetlights are
still visible, with comparable contrast from one another. The
amplitude image, in which the streetlights are also present, has
helped preserve these small objects. Note that the location of
the contours in the jointly regularized images exactly coincide.
As they are obtained in order to match both the amplitude and
phase information, they are more precise than if independently
set.

Note, however, that precise (and fair) comparison between
joint and independent regularization is difficult to carry out as
the values of the hyper-parameters are not directly related (since
the models differ). The regularized images shown in Fig. 7 have
been computed using hyper-parameter values obtained using
the same -curve procedure to reduce as much as possible this
problem.

V. CONCLUSION

Speckle noise can be effectively reduced in SAR images with
a MRF approach. TV minimization results in smoothed homo-
geneous regions while preserving sharp transitions. The Mar-
kovian formulation provides a convenient way to incorporate
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priors and to perform joint regularization. We have shown on
real data that this can help to prevent over-regularization effects
of objects that are visible in different images (such as ampli-
tude and interferometric phase). Moreover, the contours of the
jointly regularized images are more precise as all information is
merged.

Heavy-tailed distributions such as Nakagami law that governs
SAR amplitude lead to nonconvex likelihood terms. The under-
lying minimization problem for MAP estimation is, therefore,
difficult and many local minimum are present. Graph-cuts offer
an efficient approach for these optimization problems. Although
graph-cut-based algorithms that exactly minimize the target en-
ergy are known, they can hardly be applied in practice due to
computational and memory constraints. We derived a minimiza-
tion algorithm suitable for (joint) regularization of large images.

The regularized images obtained both on synthetic and real
data were satisfying. The algorithm is faster than existing graph-
cut-based techniques. We have shown that joint regularization
can be performed with little computation overload. It helps pre-
venting loss of small objects (over-regularization) by merging
all information.

The regularization prior chosen (TV) is responsible for the
loss of contrast observed on the regularized images. Contrast
loss is a known issue of MRF models with quadratic data fidelity
and TV prior [41], [50]. We have observed that this contrast loss
is also present in the case of speckle noise (Nakagami distri-
bution). Under-regularization leads to better contrast preserva-
tion and a tradeoff between the bias and variance of the regu-
larized image must be found depending on the target applica-
tion. Moreover, the joint regularization scheme we have pro-
posed better preserves the contrast compared to the channel in-
dependent prior scheme. Other MRF models could be consid-
ered to overcome this contrast issue provided the prior energy
remains convex as required by our minimization algorithm. An-
other option would be to extend the iterative contrast restoration
method of [45] to the case of speckle noise. This technique relies
on solving a series of TV minimization problems. Its extension
from the additive noise case with symmetrical log-likelihood to
the case of multiplicative noise (asymmetrical log-likelihood)
is, however, not straightforward. Another attempt has been pro-
posed in [17] using the concept of levelable functions but it re-
quires to perform a nonconvex optimization and some deeper
analysis still remains to be done.

The quality of the results could be improved for 3-D urban
modeling by introducing more elaborated prior knowledge in
combination with contextual interpretation of the urban scene.
The MRF model is flexible enough to incorporate higher level
prior models. Including radar geometric deformations compen-
sation in the regularization process could be an interesting step
toward successful use of the regularized images.
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