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ABSTRACT

Penalized maximum likelihood denoising approaches
seek a solution that fulfills a compromise between data fi-
delity and agreement with a prior model. Penalization terms
are generally chosen to enforce smoothness of the solution
and to reject noise. The design of a proper penalization term
is a difficult task as it has to capture image variability. Image
decomposition into two components of different nature, each
given a different penalty, is a way to enrich the modeling.
We consider the decomposition of an image into a component
with bounded variations and a sparse component. The corre-
sponding penalization is the sum of the total variation of the
first component and the L0 pseudo-norm of the second com-
ponent. The minimization problem is highly non-convex, but
can still be globally minimized by a minimum s-t-cut com-
putation on a graph. The decomposition model is applied to
synthetic aperture radar image denoising.

Index Terms— denoising, discrete minimization, graph-
cuts, synthetic aperture radar.

1. INTRODUCTION

Image denoising has been considered in the seminal work of
Rudin, Osher and Fatemi (ROF) [1] as the decomposition of
an image into a component with bounded variations (BV),
and a noise component. The noise is removed by minimizing
the total variation (TV) of the BV component, subject to a
data fidelity constraint. The popularity of TV-based denoising
comes from its ability to preserve sharp edges in the denoised
image (i.e., in the BV component).

It has long been noted that ROF model leads to “cartoon-
like” images. This can be better understood by considering
ROF in a Bayesian framework. Data fidelity expresses the
likelihood while total variation models the prior on the de-
noised image. Piecewise constant images have low total vari-
ation, and are therefore given a high prior probability. TV
prior therefore biases the solution towards piecewise constant
(i.e., “cartoon”) images. This is often considered a problem,
sometimes referred to as a staircasing effect [2].
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Meyer proposed to take advantage of this effect to per-
form a decomposition of an image into its geometrical (so-
called “structure”) and textural components. To model the
prior of textures as highly oscillating, he suggested the use of
the G-norm [3]. Since that work, several image decomposi-
tion models have been studied in the literature [4, 5, 6, 7]. In
some approaches, the focus is put on the decomposition of a
noiseless image into two parts. In others, the image is decom-
posed into two parts plus a noise component. We follow the
latter approach in this paper.

We consider the restoration of an image formed by the
sum of a piecewise constant component and by some isolated
pixels. Such a model can for example be applied to synthetic
aperture radar (SAR) images in which the scene can often be
considered as a mix of homogeneous regions and point-like
strong scatterers. The restoration of the two components can
be obtained by minimizing the sum of TV and L0, as dis-
cussed in section 2. The minimization problem to handle is
challenging: it is combinatorial due to the L0 term. The spe-
cific form of the energy (namely, the separability of the non-
convex part) can be exploited to design an algorithm for exact
discrete minimization. The algorithm, described in section 3,
is based on a minimum s-t-cut computation on a graph. We
illustrate the method on numerical experiments and SAR data
in section 4.

2. THE TV+L0 DECOMPOSITION MODEL

We describe the problem of the recovery of a scene u from an
observed image v corrupted by noise. Images are considered
sampled and quantized. The scene decomposition model is
introduced in the following paragraph. Then, noise modeling
is described. Finally, the TV+L0 minimization problem is
stated.

2.1. Scene decomposition model

We consider scenes u that can be decomposed as the sum of
two terms: u = uBV + uS, where uBV is a component with
low total variation (i.e., close to piecewise constant), and uS
is a sparse component (i.e., with all pixels but a few equal to
zero).
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The total variation of component uBV can be approxi-
mated1 by TV(uBV) =

∑
(k,l) wk,l|uBVk−uBVl|, where (k, l)

denotes a clique (i.e., pair of neighboring pixels), andwk,l is a
weight. The sparsity of component uS is defined by the value
of the L0 pseudo-norm, i.e., the number of non-zero pixels of
uS: L0(uS) =

∑
k 1− δ(uSk).

By considering that the two components uBV and uS
are statistically independent, the joint prior distribution
p(uBV,uS) can be modeled in the framework of Markov ran-
dom fields by:

− log p(uBV,uS) = − log p(uBV)− log p(uS)

= βBV TV(uBV) + βS L0(uS).
(1)

2.2. Image formation model

We assume that the likelihood distribution that relates the
noisy image v to the scene u is separable, i.e., can be written
as a product of the likelihood at each pixel k:

p(v|u) =
∏
k

p(vk|uk). (2)

We therefore consider no mixing (such as that caused by blur-
ring) or noise correlation in our image formation model.

If the noise is additive, the image v can be written as v =
uBV + uS + n, with n a noise component. In the case of
multiplicative noise, like speckle noise occurring in coherent
imaging technique such as SAR, the image writes v = (uBV+
uS)×n. Note that for some noise distributions (e.g., Poisson
noise, or Rice distribution), no such relation exist.

The likelihood distribution may depend on each term of
the scene decomposition p(vk|uBVk, uSk), as will be dis-
cussed in section 4.

2.3. Energy minimization problem

Starting from an observed noisy image v, the components
uBV and uS can be estimated in the maximum a posteriori
sense by solving the following minimization problem:

̂(uBV,uS) = arg min
(uBV,uS)

−log p(v|uBV,uS)−log p(uBV,uS)

= arg min
(uBV,uS)

D(v,uBV,uS)+ βBV TV(uBV)+ βS L0(uS)

(3)

Given an input image v with N pixels, minimization prob-
lem (3) has 2N unknowns. The objective function is non-
continuous and highly non-convex in variable uS (possibly
also in variable uBV depending on D(·)) and is not separa-
ble in variable uBV (the TV term induces a coupling between
values at different sites). It is thus very challenging to solve.

1our choice of anistropic TV rather than isotropic TV will find its justifi-
cation in the use of the discrete minimization technique described in section 3

We describe next section how the global minimum can
still be found by exact discrete minimization via a combi-
natorial optimization technique based on a minimum s-t-cut
computation.

3. EXACT DISCRETE MINIMIZATION
BY GRAPH-CUTS

We show in the following paragraphs how to solve minimiza-
tion problem (3) exactly among discrete images uBV and uS.
At each of their N pixels, these images take values respec-
tively in the discrete ordered sets {α1, α2, · · · , αmBV} and
{γ1, γ2, · · · , γmS}.

3.1. Problem reformulation

We begin by considering minimization problem (3) for uBV
fixed. We write u?

S(uBV) the minimizer of one such restricted
problem:

u?
S(uBV) = arg min

uS

D(v,uBV,uS) + βS L0(uS) (4)

It comes from the separability of the data fidelity and L0 terms
(see our hypotheses discussed in paragraph 2.2) that the com-
putation of u?

S(uBV) requires to solve N mono-dimensional
minimization problems:
uSk

?(uBVk) = uSk
† if − log p(vk|uBVk, uSk

†) + βS

< − log p(vk|uBVk, uSk = 0),

uSk
?(uBVk) = 0 otherwise;

(5)
with uSk

† = arg minuSk
− log p(vk|uBVk, uSk) either known

in closed form, or numerically computed inO(mS) operations
in the worst case.

We can now reformulate minimization problem (3) into
an equivalent problem involving only uBV:

arg min
uBV

D(v,uBV,u
?
S(uBV)) + βS L0(u?

S(uBV))︸ ︷︷ ︸
(i)

+βBV TV(uBV)︸ ︷︷ ︸
(ii)

(6)

The term (i) is of the form
∑

k fk(uBVk) (i.e., it is separable),
and (ii) is a convex term of the form

∑
(k,l) gkl(uBVk, uBVl)

(i.e., involving only first order cliques).
Solving problem (6) gives u?

BV. The pair (u?
BV,u

?
S(u

?
BV))

obtained is then a global minimizer of problem (3). We de-
scribe in next paragraph how problem (6) can be stated equiv-
alently as a minimum s-t-cut computation on a graph.

3.2. Graph representation

Minimization problems of the form of problem (6), with a
non-convex but separable discrete potential fk and a con-
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Fig. 1. Graph construction for discrete minimization.

vex discrete potential over first-order cliques gkl can be ex-
actly solved by computing a minimum s-t-cut on a graph with
N ×mBV nodes [8, 9]. We give here a quick overview of how
to restate such a minimization problem as a min-cut compu-
tation.

We begin by giving a brief description of Ishikawa’s graph
construction [8]. As depicted in figure 1, the graph is a su-
perimposition of layers of nodes. Each layer has N nodes,
one for each image pixel, and pairs of arcs connect neigh-
boring nodes (the cliques of the underlying pixel grid shown
in Fig.1(a)). The mBV different layers represent each possi-
ble level of the discrete set {α1, α2, · · · , αmBV}. Two spe-
cial nodes (terminals) are added: a source s and a sink t.
Each node is also connected to its two counterparts in the
next layer below and above. The first and last layers are
connected respectively to the source and sink. Finally, a ca-
pacity is set to each arc, as depicted in Fig.1(c). The node
corresponding to pixel k, located on the i-th layer, repre-
sents the value uBVk = αi. It is connected to its neigh-
bors from the same layer with horizontal arcs with capacity

= βBV · (αi+1 − αi). The vertical arc going downstream
(from source to sink) is given the weight = fk(αi). The
vertical arc going upstream is given infinite cost =∞.

With this construction, cuts with finite cost are in bijec-
tion with the set {α1, α2, · · · , αmBV}N of all possible discrete
images uBV (see [8]). The cost of each cut equals the value
of the energy minimized in (6) for the corresponding image
uBV. Thus, the minimum cut gives the global minimizer u?

BV
of problem (6), from which we deduce u?

S(u
?
BV) to solve the

initial image decomposition problem (3).

Fig. 2. Surface representation of Rice neg-log-likelihood (sur-
face drawn for vk = 1).

4. RESULTS

We illustrate in the following paragraphs the application of
the discrete minimization algorithm to decompose a SAR im-
age into homogeneous regions and strong scatterers with the
TV+L0 model.

4.1. Model for SAR images

High and very high resolution SAR scenes are generally a
mix of rather homogenous regions and point-like strong scat-
terers. These scatterers have strong contrast (amplitudes sev-
eral orders of magnitude higher than that of the homogeneous
background). Man-made structures (buildings, bridges, py-
lons, . . . ) produce such strong echoes.

The observed SAR amplitude image v is corrupted by
speckle noise generated by the coherent summation of echoes
coming from different scatterers. In a homogeneous re-
gion, noise follows Rayleigh distribution (Gamma distribu-
tion when considering intensity rather than amplitude). When
a strong scatterer is present in a resolution cell, noise distribu-
tion is better described by a Rice distribution[10] (see Fig. 2):

− log p(vk|uBVk, uSk) =
vk

2 + uSk
2

2uBVk
2

+ 2 log uBVk

− log I0

(
vk · uSk

uBVk
2

)
, (7)

with I0 modified Bessel function of the first kind. Note that
the amplitude uBVk must be strictly positive and that uSk is
either equal to zero (absence of strong scatterer) or strictly
positive. In the absence of a strong scatterer, equation (7)
simplifies to the widely used Rayleigh model.
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Fig. 3. SAR image denoising: comparison of TV denoising
and TV+L0 decomposition (SAR image c©CNES/DGA).

4.2. Energy minimization

Rice neg-log-likelihood defined in equation (7) is quasi-
convex (but non-convex) in each variable. For a given value
of uBV, it reaches its unique minimum at u∗S(uBV) (red
curve on Fig. 2). At each pixel k, and for each value
{α1, α2, · · · , αmBV}, the corresponding value of uSk

∗(uBVk)
can be computed efficiently by bisection. The number of
quantization levels mS of the sparse component can be cho-
sen large to account for the high dynamic range of strong
scatterers with very little overhead. The bounded variations
component has very low dynamic range and choosingmBV ≈
100 is often enough in practice. The positivity constraints
(∀k, uBVk > 0 and uSk ≥ 0) are straightforwardly enforced
by considering discrete levels that satisfy the constraints. The
tuning of parameters βBV and βS is done by hand by first set-
ting a suitable βBV value with βS = 0, and then choosing a
value of βS that gives a satisfying number of strong scatterers.

4.3. Decomposition results

We illustrate the method on a real SAR image (Fig. 3.a: south
of Toulouse city, France, c©CNES/DGA). Fig. 3 compares the
results obtained when denoising with a total variation min-
imization approach and with the TV+L0 decomposition ap-
proach. The TV approach corresponds to setting βS to infin-
ity. Strong scatterers are either suppressed or distorted (re-
duced amplitude, spreading) as they do not fit to the prior
model (result of TV denoising shown Fig. 3.b). TV+L0 de-

composition produces much smoother regions in the BV com-
ponent (Fig. 3.c left) and sharp targets in the sparse compo-
nent (Fig. 3.c right).

5. CONCLUSION

The proposed decomposition provides a better model to im-
ages such as in SAR imaging (both in terms of scene prior and
noise model). The challenging highly non-convex problem
can be exactly solved by computation of a min-cut. Though
the number of quantization levels can be limited, the graph-
based minimization algorithm is limited in its use by the cost
of the memory representation of the graph: N ×mBV nodes
and about 3N ×mBV pairs of arcs.
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