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Abstract

This paper presents GridNet, a new Convolutional Neural Network (CNN) architecture
for semantic image segmentation (full scene labelling). Classical neural networks are
implemented as one stream from the input to the output with subsampling operators
applied in the stream in order to reduce the feature maps size and to increase the receptive
field for the final prediction. However, for semantic image segmentation, where the task
consists in providing a semantic class to each pixel of an image, feature maps reduction
is harmful because it leads to a resolution loss in the output prediction. To tackle this
problem, our GridNet follows a grid pattern allowing multiple interconnected streams to
work at different resolutions. We show that our network generalizes many well known
networks such as conv-deconv, residual or U-Net networks. GridNet is trained from
scratch and achieves competitive results on the Cityscapes dataset.

1 Introduction
Convolutional Neural Networks (CNN) have become tremendously popular for a huge num-
ber of applications [1, 13, 17] since the success of AlexNet [7] in 2012. AlexNet, VGG16
[19] and ResNet [6], are some of the famous architectures designed for image classification
which have shown incredible results. While image classification aims at predicting a single
class per image (presence or not of an object in an image) we tackle the problem of full scene
labelling. Full scene labelling or semantic segmentation from RGB images aims at segment-
ing an image into semantically meaningful regions, i.e. to provide a class label for each
pixel of an image. Based on the success of classical CNN, new networks designed especially
for semantic segmentation, named fully convolutional networks have been developed. The
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main advantage of these networks is that they produce 2D matrices as output, allowing the
network to label an entire image directly. Because they are fully convolutional, they can be
fed with images of various sizes (with some constraints).

In order to construct fully convolutional networks, two strategies have been developed:
Conv-Deconv networks and dilated convolution-based networks (see Section 2 for more de-
tails). Conv-Deconv networks are composed of two parts: the first one is a classical convo-
lutional network with subsampling operations which decrease the feature maps sizes and the
second part is a deconvolutional network with upsampling operations which increase the fea-
ture maps sizes back to the original input resolution. Dilated convolution-based networks do
not use subsampling operations but a "à trous" algorithm on dilated convolutions to increase
the receptive field of the network.

If increasing the depth of the network has often gone hand in hand with increasing the
performance on many data rich applications, it has also been observed that the deeper the
network, the more difficult its training is, due to vanishing gradient problems during the
back-propagation steps. Residual networks solve this problem by using identity residual
connections to allow the gradient to back-propagate more easily. As a consequence, they are
often faster to train than classical neural networks. The residual connections are thus now
commonly used in all new architectures.

Lots of pre-trained (usually on Imagenet [3]) residual networks are available for the
community. They can be fine-tuned for a new task. However, the structure of a pre-trained
network cannot be changed radically which is a problem when a new architecture, such as
ours, comes out.

In this paper we present GridNet, a new architecture especially designed for full scene
labelling. GridNet is composed of multiple paths from the input image to the output predic-
tion, that we call streams, working at different image resolutions. High resolution streams
allow the network to give an accurate prediction in combination with low resolution streams
which carry more context thanks to bigger receptive fields. The streams are interconnected
with convolutional and deconvolutional units to form the columns of our grid. With these
connections, information from low and high resolutions can be shared. It is especially use-
ful for semantic segmentation because high resolution streams can give accurate predictions
when low resolution ones carry more context thanks to a bigger receptive field.

In Section 2, we review the network architectures used for full scene labelling from which
the GridNet takes inspiration and we show how our approach generalises existing methods.
In Section 3, we present the core components of the proposed GridNet architecture. Finally,
Section 4 shows results on the Cityscapes dataset.

2 Related Work
In traditional CNN, convolutional and non-linearity computational units are alternated with
subsampling operations. The purpose of subsampling is to increase the network receptive
field while decreasing the feature maps sizes. A big receptive field is necessary for the net-
work to get bigger context for the final prediction while the feature maps size reduction is a
beneficial side effect allowing to increase the number of feature maps without overloading
the (GPU) memory. In the case of semantic segmentation where a full-resolution predic-
tion is expected, the subsampling operators are detrimental as they decrease the final output
resolution.

To get a prediction at the same resolution than the input image, Long, Shelhamer et al.
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proposed recently a Fully Convolutional Networks (FCN) [18] by adding a deconvolution
part after a classical convolutional neural network. The idea is that, after going down to the
convolutional network, a deconvolution part, using upsampling operator and deconvolution
(or fractionally-strided convolution) increases the feature maps size back to the input resolu-
tion. Noh et al. [12] extended this idea by using maximum unpooling upsampling operators
in the deconvolution part. The deconvolution network is the symmetric of the convolution
one and each maximum pooling operation in the convolution is linked to a maximum un-
pooling one in the deconvolution by sharing the pooling positions. Ronneberger et al. [15]
are going even further with their U-Net by concatenating the feature maps obtained in the
convolution part with feature maps of the deconvolution part to allow a better reconstruc-
tion of the segmented image. Finally, Lin et al. [8] used the same idea of U-Net but instead
of concatenating the feature maps directly, they used a refineNet unit, containing residuals
units, multi-resolutions fusions and chained residual pooling, allowing the network to learn
a better semantic transformation.

All of these networks are based on the idea that subsampling is important to increase
the receptive field and try to override the side effect of resolution lost with deconvolutionnal
technics. In our GridNet, composed of multiple streams working at different feature map
sizes, we use the subsampling and upsampling operators as connectors between streams
allowing the network to take decisions at any resolution. The upsampling operators are not
used to correct this side effect but to allow multi-scale decisions in the network. In a recent
work, Newell et al. [11] stacked many U-Net showing that successive steps of subsampling
and upsampling are important to improve the performance of the network. This idea is
improved in our GridNet with the strong connections between streams.

Yu et al. [22] studied another approach to deal with the side effect of subsampling. They
show that, for a semantic labelling task, the pooling operations are harmful. Therefore, they
remove the subsampling operators to keep the feature maps at the same input resolution.
Without subsampling, the receptive field is very small so they use dilated convolution to in-
crease it. Contrarily to classical convolutions, where the convolution mask is applied onto
neighbourhood pixels, dilated convolutions have a dilatation parameter to apply the mask
to more and more apart pixels. In their work Wu et al. [21] adapt the popular ResNet [6]
pre-trained on ImageNet [3] for semantic segmentation. Residual networks [6] are very deep
networks trained with residual connections allowing the gradient to propagate easily to the
first layers of the network correcting the vanishing gradient problems. Wu et al. only keep
the first layers of ResNet and change the classical convolutions into dilated ones. For mem-
ory problems, they also keep 3 subsampling operators so the final output prediction is at
1/8 of the input size, and then use linear interpolations to retrieve the input resolution. In
[23], Zhao et al. replace the linear interpolation by a Pyramid Pooling module. The pyramid
pooling module is composed of multiple pooling units of different factor, followed by con-
volutions and upsample operators to retrieve the original size. All the feature maps obtained
with different pooling sizes are then concatenated before a final convolution operator that
gives the prediction. When Zhao et al. add a module at the end of the network to increase the
feature maps size and allow a multi-scale decision, we incorporate this multi-scale property
directly into our network with the different streams.

In their work, He et al. [5] study the importance of residual units and give detailed results
on the different strategies to use residual connections (whether batch normalisation should be
used before the convolutions, whether linearity operator should be used after the additions,
etc.). GridNet also benefits from these residuals units.

With their Full Resolution Residual Network (FRRN) [14], Pohlen et al. combine a conv-
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Input Prediction
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Figure 1: GridNet: each green unit is a residual bloc, which does not change the input
map resolution nor the number of feature maps. Red blocks are convolutional units with
resolution loss (subsampling) and the doubled number of feature maps. Yellow units are
deconvolutional blocks which increase the resolution (upsampling) and divide by two the
number of feature maps. A zoom on the red square part with a detailed compositions of each
blocks is shown in Figure 2

deconv network with a residual one. They also use different streams but only two of them:
one for the residual network linked with upsampling and subsampling operations, and one for
the conv-deconv network which does not have any residual connections. GridNet subsumes
FRNN and can be seen as a generalisation of this network.

Saxena et al. have presented a Convolutional Neural Fabrics [16] which structure looks
similar to ours but which aim is different. They choose the best network architecture by
training the full grid and showing which path is the most used in the grid. In our case, the
full grid is used to tackle our problem.

3 GridNet
The computation graph of a GridNet is organised into a two-dimensional grid pattern, as
shown in Figure 1. Each feature map Xi, j in the grid is indexed by line i and column j. Maps
are connected through computation layers. Information enters the model as input to the first
block of line 0 and leaves it as output from the last block of line 0. Between these two
points, information can flow in several paths, either directly between these entry/exit points
in a straight line or in longer paths which also involve lines with indexes 6= 0.

Information is processed in layers which connect blocks Xi, j. The main motivation of our
model is the difference between layers connecting feature maps horizontally or vertically:
We call horizontal connections “streams”. Streams are fully convolutional and keep feature
map sizes constant. They are also residual, i.e. they predict differences to their input [6].
Stream blocks are green in figure 1. Vertical computing layers are also convolutional, but
they change the size of the feature maps: according to the position in the grid, spatial sizes are
reduced by subsampling or increased by upsampling, respectively shown as red and yellow
blocks in Figure 1. Vertical connections are NOT residual. The main idea behind this concept
is an adaptive way to compute how information flows in the computation graph. Subsampling
and upsampling are important operations in resolution preserving networks, which allow to
increase the size of receptive fields significantly without increasing filter sizes, which would
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Figure 2: Detailed schema of a GridBlock.
Green units are residual units keeping fea-
ture map dimensions constant between input
and output. Red units are convolutional +
subsampling and increase the feature dimen-
sions. Yellow units are deconvolutional +
upsampling and decrease the feature dimen-
sions (back to the original one to allow the
addition). The weight in trapezium illustrate
the upsampling/subsampling operation ob-
tained with strided convolutions. BN=Batch
normalization.

require a higher number of parameters1. On the other hand, the lost resolution needs to be
generated again through learned upsampling layers. In our network, information can flow on
several parallel paths, some of which preserve the original resolution (horizontal only paths)
and some of which pass through down+up sampling operations. In the lines of the skip-
connections in U-networks [15], we conjecture that the former are better suited for details,
whereas high-level semantic information will require paths involving vertical connections.

Following the widespread practise, each subsampling unit reduces feature map size by
a factor 2 and multiplies the number of feature maps by 2. More formally, if the stream
Xi takes as input a tensor of dimension (Fi× Wi× Hi) where Fi is the number of feature
maps and Wi,Hi are respectively the width and height of the map, then the stream Xi+1 is of
dimension (Fi+1×Wi+1×Hi+1) = (2Fi×Wi/2×Hi/2).

Apart from border blocks, each feature map Xi, j in the grid is the result of two differ-
ent computations: one horizontal residual computation processing data from Xi, j−1 and one
vertical computation processing data from Xi−1, j or Xi+1, j depending if the column is a sub-
sampling or upsampling one. Several choices can be taken here, including concatenating
features, summing, or learned fusion. We opted for summing, a choice which keeps model
capacity low and blends well with the residual nature of the grid’s streams. The details are
given as follows: Let ΘRes(.), ΘSub(.) and ΘU p(.) be respectively the mapping operation for
the residual unit (green block in Figure 1), subsampling unit (red block) and upsampling unit
(yellow block). Each mapping takes as input a feature tensor X and parameters θ .

If the column j is a subsampling column then:

Xi, j = Xi, j−1 +Θ
Res(Xi, j−1,θ

Res
i, j ) + Θ

Sub(Xi−1, j,θ
Sub
i, j )

Otherwise, if the column j is an upsampling one then:

Xi, j = Xi, j−1 +Θ
Res(Xi, j−1,θ

Res
i, j ) + Θ

U p(Xi+1, j,θ
U p
i, j )

Border blocks are simplified in a natural way. An alternative to summing is feature map con-
catenation, which increases capacity and expressive power of the network. Our experiments

1An alternative would be to use dilated convolutions with the à trous algorithm [22].
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on this version showed, that it significantly increases training difficulty, especially when the
network is trained from scratch.

The capacity of a GridNet is defined by three hyper parameters, NS, NCs and NCu re-
spectively the number of residuals streams, the number of subsampling columns and number
of upsampling columns. Inspired by the symmetric Conv-Deconv networks [18], we set
NCs=NCu in our experiments, but this constraint can be lifted.

Input Prediction

U-Net Full-Resolution residual
Network

Fully convolutional network

Figure 3: GridNets generalize several classical resolution preserving neural models, like
Conv-Deconv networks [18] (blue connections) and U-networks [15] (green connections)
and Full Resolution Residual Networks (FRRN) [14] (yellow connections).

GridNets generalize several classical resolution preserving neural models, as shown in
figure 3. Standard models can be obtained by removing connections between feature maps
in the grid. If we keep the connections shown in blue in figure 3, we obtain Conv-Deconv
networks [18], which feature a single path without branches, first down-sampling and then
up-sampling data. U-networks [15] (shown by green connections) add skip-connections be-
tween down-sampling and corresponding up-sampling stages, and Full Resolution Residual
Networks (FRRN) [14] (shown as yellow connections) add a more complex structure.

3.1 Blockwise dropout for GridNets

Input Prediction

Figure 4: The blue path only using the high resolution stream is shorter than the orange path
which also uses low resolution streams. To force the network to use all streams we randomly
drop streams during training, indicated by red crosses.

A side effect of our 2D grid topology with input and output both situated on line 0 is
that the path from the input to the output is shorter across the high resolution stream (blue
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path in figure 4) than with the low resolution one (orange path in figure 4). Longer paths in
deep networks may translate into well known problems of vanishing and exploding gradient.
As a consequence, paths involving lower resolutions streams take a longer time to converge
in our networks and generally a more difficult to train. To force the network to use all of
its available streams, we employed a technique inspired by dropout, which will call total
dropout. We randomly drop residual streams and set the corresponding residual mapping to
zero. We force the network to use all streams during inference.

More formally, let ri, j = Bernoulli(p) be a random variable taken from a Bernoulli dis-
tribution, which is equal to 1 with a probability p and 0 otherwise. Then the feature map
computation becomes: Xi, j = Xi, j−1 + ri, j(Θ

Res(Xi, j−1,θ
Res
i, j ))+Θ{Sub;U p}(Xi+1, j,θ

{Sub;U p}
i, j )

3.2 Parameter count and memory footprint for GridNet
In neural networks, the memory footprint depends on both the number of activations and
the number of trainable parameters. In many architectures, these two numbers are highly
correlated. While it is still the case in a GridNet, the grid structure provides a finer control
over these numbers. Let us consider a GridNet built following the principles from Section 3:
with NS streams, NCs subsampling columns and NCu upsampling columns, with the first
stream having F0 feature maps at resolution W0×H0, and the others streams obtained by
downsampling by 2×2 and increasing feature maps by 2. From the exact computation of
the number of parameters nbparam and the number of activation values nbact , we can derive
meaningful and approximations that can be interpreted.

nbparam ≈ 18×22∗(Ns−1) F2
0 (2.5NCs +NCu−2)

Which illustrate that the number of parameters is most impacted by the number of
streams NS, followed by number of feature maps (controlled by F0), then only by the number
of columns.

nbactiv ≈ 6H0 W0 F0 (4NCu +3NCs−2)

Which shows that the size of the activations mainly depends on the first stream size
(width, height and number of feature maps) and the grows linearly with the number of
columns. In practice, the total memory footprint of a network at training time depends on its
number of parameters and the size of the activations, but also on the optimizer and the mini-
batch size. The gradient computed by the optimizer takes the same space as the parameters
themselves and the optimizer may also keep statistics on the parameters and gradients (as in
Adam). The mini-batch size mechanically multiplies the memory footprint as the activations
of multiple inputs need to be computed and stored in parallel.

4 Experimental results
We evaluated the method on the Cityscapes dataset, which consists in high resolution (1024×
2048 pixels) images taken from a car driving across 50 different cities in Germany. 2975
training images and 500 test images have been fully labelled with 30 semantic classes. How-
ever, only 19 classes are taken into account for the automatic evaluation on the Cityscapes
website 2, therefore we trained GridNet on these classes only. Semantic classes are also

2https://www.cityscapes-dataset.com/
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grouped into 8 semantic categories. The ground truth is not provided for the test set but an
online evaluation is available on the Cityscapes website. The dataset contains also 19998
images with coarse (polygonal) annotations but, we chose not to use them for training.

The Cityscapes performance are evaluated based on the Jaccard Index, commonly known
as the Pascal VOC Intersection-over-Union (IoU) metric. The IoU is given by T P

T P+FP+FN
where T P, FP and FN stand for the number of True Positive, False Positive and False
Negative pixels. IoU is biased toward object instances that cover a large image area so
an instance-level intersection-over-union metric iIoU is also used. The iIoU is computed
by weighting the contribution of each pixel by the ratio of the class average instance size to
the size of the respective ground truth instance. Finally, they give results accuracy for two
semantic granularities (class and category) with the weighted and not weighted IoU metric
leading to 4 measurements.

For our experiments we tested GridNet with 5 streams with the following feature map
dimensions: [16,32,64,128,256]. GridNet is composed of 3 subsampling columns (convo-
lutional parts) followed by 3 upsampling columns (deconvolutional part). To fit a batch of 4
images fully on a single GPU, we limit input size to tiles of 400×400 pixels, which means
that the low-resolution stream has feature maps of size 25×25 elements and 256 dimensions.

The high resolution input images (1024× 2048 pixels) allow us to crop patches of dif-
ferent resolutions. For training, we crop patches of random sizes between 400× 400 and
1024× 1024 at random locations. Then the patches are resized to 400× 400 and fed to the
network. For data augmentation, we also apply random horizontal flipping. We do not apply
any post-processing for the images but we added a batch normalization layer at the input of
the grid. We use the classical cross-entropy loss function to train our network.

We trained our network using the Adam optimizer with a learning rate of 0.01, a learning
rate decay of 5× 10−6, β1 = 0.9, β2 = 0.999 and an ε = 1× 10−8. After 800 epochs the
learning rate is decreased to 0.001. We stopped our experiments after 10 days leading to
approximately 1900 training epochs.

4.1 Discussion

We conducted a study to evaluate the effects of each of our architectural components and
design choices. The results are presented in Table 1. Sum† is the results given by the
network presented in section 3 with total dropout operators (see section 3.1). Total dropout
proved to be a key design choice, which lead to significative improvement in accuracy.

We also provide results of a fully residual version, where identity connections are added
in both horizontal and vertical computing connections (whereas the proposed method is
residual in horizontal streams only). Fully residuality did not prove to be an advantage. Total
dropout did not solve learning difficulties and further impacted training stability negatively.

Finally, concatenation of horizontal and vertical streams, instead of summing, did also
not prove to be an optimal choice. We conjecture that the high capacity of the network did
not prove to be an advantage.

At this point we should indicate, that we performed architecture optimizations for differ-
ent design-choices. When a design choice lead to a higher number of trainable parameters
(e.g. by concatenating features), we performed experiments by removing parameters through
architectural changes. The architecture described above is the one of the proposed method.



FOURURE ET AL.: RESIDUAL CONV-DECONV GRIDNET 9

Performance measures
Fusion h-residual v-residual Total dropout IoU class iIoU class IoU categ. iIoU categ.
Sum X 57.2 35.6 83.1 68.4
Sum† X X 65.0 43.2 85.6 70.1
Sum X X 57.6 36.8 86.0 72.6
Sum X X X 35.6 23.0 62.1 60.3
Concat X 53.9 34.0 82.2 65.2

Table 1: Results of our different GridNet variants on the Cityscapes validation set: Fusion
indicates how feature maps are fused between horizontal and vertical computations. The
second and third columns indicate whether horizontal resp. vertical computation are residual.
† proposed method.

Figure 5: Semantic segmentation results obtained with GridNet. Left the input image,
middle the ground truth and right our results.

4.2 Qualitative and Quantitative Results

Figure 5 illustrates the segmentation performance on sample images. In Table 2 we com-
pare results by the proposed method compared to the state of the art taken from the official
Cityscapes website. We restrict the comparison to methods using the same input information
as us (no coarse annotation, no stereo inputs). Our network gives results comparable the
state-of-the-art network, namely the FRNN network presented in Section 2.

All other results have been obtained by networks pre-trained for classification using the
Imagenet dataset. Note that among the 9 other reported results of pre-trained networks, only
one of them (RefineNet) give slightly better results than our networks.

Name Without Performance measures
pretraining IoU class iIoU class IoU categ. iIoU categ.

FRRN - [14] 3 71,8 45,5 88,9 75,1
GridNetwork - Ours 3 69,45 44,06 87,85 71,11

RefineNet - [8] 7 73,6 47,2 87,9 70,6
Lin et al.- [9] 7 71,6 51,7 87,3 74,1

LRR - [4] 7 69,7 48 88,2 74,7
Yu et al.- [22] 7 67,1 42 86,5 71,1

DPN - [10] 7 66,8 39,1 86 69,1
FCN - [18] 7 65,3 41,7 85,7 70,1

Chen et al.- [2] 7 63,1 34,5 81,2 58,7
Szegedy et al.- [20] 7 63 38,6 85,8 69,8
Zheng et al.- [24] 7 62,5 34,4 82,7 66

Table 2: Results on the Cityscapes dataset benchmark. We only report published papers
which use the same data as us (no coarse annotation, no stereo inputs).
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5 Conclusion
We have introduced a novel network architecture specifically designed for semantic segmen-
tation. The model generalizes a wide range of existing neural models, like conv-deconv
networks, U-networks and Full Resolution Residual Networks. A two-dimensional grid
structure allows information to flow horizontally in a residual resolution-preserving way
or vertically through down- and up-sampling layers. GridNet shows promising results even
when trained from scratch without any pre-training on classification (Imagenet), which is a
standard approach in the semantic segmentation literature. We believe that our network could
also benefit from better weight initialization, for example by pre-training it on the ADE20K
dataset.
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