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ABSTRACT

Fisher Scores have been shown to be accurate global image features for classification. However, their
performance is very dependent on the quality of the input features as well as the normalization steps
applied to them. In this paper, we propose to embed the Fisher vectors in an end-to-end trainable deep
network by concentrating on these two crucial elements: adapting the encoding to the deep features
and normalizing the extracted second order statistics. Therefore, we make use of a deep sparse coding
module that allows to sample the center of each Gaussian function from a learned subspace and thus
to better fit the high dimensional data distribution. Second, we introduce a new normalization module
that computes an approximate square root matrix normalization well adapted to the Fisher vectors.
These processing steps are embedded in a deep network so that all the modules work together for the
sole purpose of improving classification performance. Experimental results show that this solution
clearly outperforms many alternatives in the context of material, indoor scenes or fine-grained image
classification.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Deep neural networks have emerged as an essential solution
for performing classification tasks. In these networks, convo-
lutional layers extract accurate local features that are pooled to
a global feature vector which is sent to fully connected layers
for classification. The first networks neglected the pooling step
and directly sent the set of local features in the dense layers
(Simonyan and Zisserman (2015)), while the series of ResNet
apply a global average pooling to decrease the dimension of
the global feature vector and hence reduce the number of pa-
rameters of the network (He et al. (2016)). Orderless pooling
was widely used before convolutional neural networks (CNN)
with the bags of visual words (BOW) (Lazebnik et al. (2006)),
VLAD (Jégou et al. (2012)) or Fisher Vectors (Sanchez et al.
(2013)) and has shown to provide good results when applied
to CNN features (Cimpoi et al. (2015); Gong et al. (2014)).
Among them, the Fisher Vectors (FV) were the most promis-
ing because they generalize the VLAD and BOW. The main
idea of FV is to model the distribution of the training data with
a Gaussian mixture and to characterize each data point with the
derivatives over the model parameters. It appears that two main
steps are crucial in such approach (Sdnchez et al. (2013)): the
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data distribution has to be accurately fitted by the Gaussian mix-
ture and the provided second order statistics have to be carefully
normalized. In this paper, we propose to embed the Fisher rep-
resentation in an end-to-end trainable network by concentrating
on these two steps.

First, a Gaussian Mixture Model (GMM) seems not to be
well adapted to the deep local features since they are lying in
a very high dimensional space and require too many Gaussians
to be accurately modeled (Liu et al. (2014)). Liu et al. pro-
posed a smart solution to overcome this problem which con-
sists in sampling the center of each Gaussian from a subspace
and therefore benefiting from an infinite number of Gaussians
to fit the data distribution (Liu et al. (2014)). The authors show
that this problem can be solved by a classical sparse coding
method. Unfortunately, their approach can not take advantage
of the main interest of the CNN, i.e. training end-to-end the
feature extraction, the pooling and the classification layers. To
cope with this problem, we propose in this paper, to make use
of a deep sparse coding module proposed in (Gregor and LeCun
(2010)).

Second, a recent study has shown that the normalization of
the second order statistics has a strong impact on the classifi-
cation performance (Lin and Maji (2017)). The authors pro-
posed in particular to use a square-root matrix normalization
combined with element-wise square-root and /, normalization
for bi-linear pooling. Unfortunately, unlike the bi-linear pool-
ing used in (Lin and Maji (2017)), our Fisher representation



does not provide a square matrix, thus rendering the solution
from (Lin and Maji (2017)) unusable. Thus, in this paper, we
propose to adapt the square-root matrix normalization to non
square matrices and to embed this original module in a deep
network.

By combining these two main contributions, we propose an
original end-to-end trainable deep network that extracts accu-
rate feature from images, pools them into a deep Fisher repre-
sentation and normalized these statistics. By backpropagating
the gradient of the classification loss, we are able to make all
these modules collaborate with the sole objective of improving
the performance of the classification task. Experimental tests
on three different datasets and three different backbone archi-
tectures show that our solution outperforms many alternatives.

This paper is an extended version of our previous works (Xu
et al. (2021)), called hereafter E2E-SCF for end-to-end sparse
coding Fisher vector, where only the sparse coding has been ad-
dressed. In this current version, we clearly improve the method,
the results and the analysis over (Xu et al. (2021)) as follows:

e we address the problem of the normalization of the second
order statistics,

e we force a zero-mean feature distribution for each image,

e we run extensive experiments with more network architec-
tures and much more compared approaches,

e we propose a deep analysis of the impact of each module
on the results with a clear ablation study,

e we provide the results of the original work (Xu et al.
(2021)) and compare them with our results on three dif-
ferent datasets.

2. Related works

2.1. Orderless pooling

Orderless pooling was widely used before the emergence of
the CNN-based solutions. The most popular approaches were
based on bags of visual words (BOW) (Lazebnik et al. (2006)),
VLAD (Jégou et al. (2012)) or Fisher Vectors (Sdnchez et al.
(2013)). Inspired by these early methods, some works have
evaluated the Fisher vectors or VLAD from deep features for
texture or image classification (Cimpoi et al. (2015); Gong et al.
(2014)). They show improvements over the SIFT-based coun-
terparts but, in their workflow, the dictionary or Gaussian mix-
ture model are learned independently from the deep features
and from the classifier, leaving a large margin of improvement.

Thus, the next works have focused on embedding orderless
pooling in deep networks to allow end-to-end training. Passalis
and Tefas have inserted a Bag-of-Features pooling in deep neu-
ral networks thanks to radial basis function neurons (Passalis
and Tefas (2017)). The output of the pooling module is a his-
togram of the visual words (0" order statistics) learned on the
training set. And their variations also achieve remarkable per-
formance in other tasks, such as color constancy (Laakom et al.
(2020)), visual information analysis (Krestenitis et al. (2020))
and human action recognition (Yang et al. (2020))
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Instead of counting the occurrences of the visual words in
one image, VLAD-based approaches aggregate the residuals
between the local features and their nearest visual words (1%
order statistics). NetVLAD (Arandjelovi¢ et al. (2016)) is the
first network that implements VLAD and allows an end-to-end
training for image retrieval task and then Deep Ten transforms
VLAD as a residual module for image classification (Zhang
et al. (2017). Later, Xue et al. (2018), Hu et al. (2019) and Mao
et al. (2021) improve Deep Ten in different aspects. It has been
show that first order statistics are more accurate to characterize
images in classification tasks and the Fisher vectors go further
by using first and second order statistics. Deep FisherNet (Tang
et al. (2019)) is an embedded implementation of the GMM
Fisher vector. Lin et al. (2017) introduces NetFV which extends
NetVLAD by appending the second order statistics. The end-
to-end Fisher Vector is also applied in many different domains,
like action recognition (Wang et al. (2019); Wang and Koniusz
(2021)) and remote sensing image retrieval. The main disad-
vantage of all these approaches is that they rely on a limited
number of codewords or Gaussian centers, which prevents ac-
curate modeling of the data distribution in the high-dimensional
deep feature spaces (Liu et al. (2014)).

One interesting solution to cope with this problem has been
proposed by Li et al. (2017). The authors compute Fisher vec-
tors from a mixture of factor analyzers (MFA), instead of the
classical GMM. Their solution is embedded in a deep network
which is trainable end-to-end. The idea of MFA is to approx-
imate the data manifold by low dimensional linear spaces and,
in this sense, is similar to the idea of sparse coding (Liu et al.
(2014)). Nevertheless, even if the MFA module is embedded in
a deep network, the authors show that an accurate initialization
of the weights of the network is required to obtain good perfor-
mance. This initialization consists in running an Expectation-
Maximization algorithm on the set of local features that have
to be saved in memory. Furthermore, it appears that this sec-
ond order representation requires high computation costs, high
number of parameters to learn and occupies a very large mem-
ory space (500k dimensions which is more than the image it-
self) (jacob et al. (2019)).

Another group of second-order pooling works is based on bi-
linear coding (Lin et al. (2017); Yu and Salzmann (2018); Yu
et al. (2020, 2021)). For example, B-CNN is also an end-to-
end trainable network and aggregates feature vectors by sum-
pooling their outer products (Lin et al. (2017)). Since this
pooled representation always has cumbersome size, the ap-
proaches SMSO,RUN and SRM propose to compress the bi-
linear pooled features and improves the classification perfor-
mance (Yu and Salzmann (2018); Yu et al. (2020, 2021)). The
results of these methods will be compared with ours in the ex-
periments.

Our method is inspired by (Liu et al. (2014)), detailed in the
next section. More recently, these authors have also proposed
an improved version of their work in (Liu et al. (2017)), called
HSCFV. It uses two dictionaries to code input features and con-
sequently, doubles dimension size of the Fisher vector. Nev-
ertheless, their approach is not embedded in a deep CNN for
end-to-end training. Furthermore, as sparse coding module is a
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Fig. 1. Workflow of the proposed end-to-end trainable solution. First, deep
features x; are extracted with a classical CNN backbone and normalized
(zero mean, Eq. 6). Then they are encoded into their sparse codes u; with
LISTA presented in Sec. 3.1.2. Next, Fisher score representation is pro-
duced (Eq. 5) and normalized with our proposed approach detailed in the
Sec. 3.2.2.

core part in our approach, we investigate CNN-DL (Liu et al.
(2018)) and SCN (Sun et al. (2019)) which propose their own
implementation to produce sparse code. Unlike these meth-
ods using directly the sparse code as image features of first
order statistics, our approach applies the code to further pro-
duce fisher score representation, which belongs to second order
statistics and shows superior performance over CNN-DL (see
Table 5)

Our method combines all the benefits of these previous so-
lutions: it is embedded in an end-to-end trainable network, it
samples an infinite number of Gaussian centers from a learned
subspace and it does not require any heavy computation or stor-
age to initialize the weights.

2.2. Normalization

As a post-processing step, after orderless pooling, normal-
ization plays an important role in improving the performances.
Perronnin et al. (2010) observed that the representation pooled
by Fisher Vector is degraded by burstiness issues where dis-
criminant but relatively rare visual features are overwhelmed by
those that are more frequent. To alleviate this problem, some
papers propose element-wise signed square rooting and L2-
normalization (Perronnin et al. (2010); Arandjelovic and Zis-
serman (2013)). This normalization combination is also widely
adopted in several successive orderless pooling works (Arand-
jelovi¢ et al. (2016); Lin et al. (2017); Liu et al. (2014)).

Besides the burstiness issue, Lin and Maji (2017) argued
that the output of bilinear pooling should be normalized by
matrix-logarithm functions in order to preserve the distances
between elements in the manifold. Such normalization has
been applied with success in (Carreira et al. (2012); Ionescu
et al. (2015); Huang and Van Gool (2017)) with linear classi-
fiers for semantic segmentation and image classification. The
logarithm scales the eigenvalues in the Singular Value Decom-
position (SVD) of a Symmetric Positive Definite (SPD) ma-
trix A as log(A) = Ulog(X)UT. Unfortunately, the SVD de-
composition is computed inefficiently on GPUs (Lin and Maji
(2017)), slowing down the network inference speed. Never-
theless, Lin and Maji propose a fast alternative approach with
comparable performances and based on a variant of Newton it-
erations (Lin and Maji (2017)). This solution approximates the
matrix square-root and can be embedded in a network that can
be trained end-to-end.

Unfortunately, this approach is exclusively designed for SPD
matrices such as the outputs of the bilinear pooling but can not
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be directly applied to our Fisher representation that are rectan-
gular and non symmetric matrices. Thus, we propose, in this
paper, a new normalization step for such second order statistics
matrices and that can also be embedded in a deep network.

3. Our approach

Fig. 1 illustrates the complete workflow of our solution
whose successive steps are detailed in this Section. Our net-
work starts with a pre-trained backbone constituted of convo-
lutional layers, on top of which is applied an iterative sparse
coding module called LISTA and detailed in Sec. 3.1.2. Then,
the Fisher vectors are extracted from these features and normal-
ized with our proposed solution. Then, dense layers provide the
predicted categories.

3.1. Sparse Fisher coding

3.1.1. From subspace sampling to sparse coding

In order to increase the number of Gaussians that model the
distribution of the data, we take advantage of the idea from (Liu
et al. (2014)) that samples the Gaussian centers in a subspace
spanned by a set of bases. Each mean vector is coded in this
dictionary B with a code u drawn from a zero-mean Laplacian
distribution (to enforce sparsity). Then each local feature vector
x extracted from the images and associated with the code u is
drawn from a Gaussian distribution N(Bu, X) centered on Bu.
Fig. 2 illustrates the interest of this approach.

Gaussian Mixture Sparse Coding

Fig. 2. Some data in a high dimensional space (illustrated by the sphere).
Left: With GMM the data distribution is not well fitted because of the
limited number of Gaussians. Right: With Sparse Coding, the Gaussian
centers are coded sparsely in an adapted basis (green arrows) allowing to
create unlimited number of Gaussians and so to fit better the data distri-
bution. The sparsity is illustrated by the low number of basis required to
code each center position (lines, planes or parallelograms).

Then, assuming a constant and diagonal covariance matrix
as o~ and using pointwise maximum to approximate the integral
of the distribution, Liu et al. show that the logarithm of the
likelihood of x can be estimated as (Liu et al. (2014)):

.1
log(P(xIB)) = min —slx = Bull; + Alul, (1)

where A is the scale parameter of the Laplacian distribution of
u.

Interestingly, this equation represents the classical problem
of sparse coding. Liu et al. proposed to use an off-the-shelf
sparse coding solver to learn the dictionary B and infer the code
u. Obviously, making use of such independent solver is a good
solution to minimize the reconstruction error of x with a sparse
code, but it neglects the main goal which is to improve the per-
formance of the classification task.
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Fig. 3. Block diagrams of ISTA (left) and LISTA (right). ISTA evaluates
the sparse code u of x with the iterative process detailed in Eq. 4. The
shrinkage function is denoted 7 in this equation. LISTA is an unfolded
version of ISTA (2 iterations here) that can be embedded in a end-to-end
trainable network. In our framework, the matrices S and W are learned
and initialized thanks to our warm-up step, detailed in Sec.4.3.

Hence, we propose in the next section to embed a sparse cod-
ing module in a deep neural network that is trained end-to-end.
The main advantage of such an approach is that it is learning
a dictionary and sparse codes that are accurate to discriminate
the different categories in the current dataset.

3.1.2. Embedding sparse coding with LISTA
Our aim is to find a solution for the following equation:

min f(u) + Allully (2)

where f(u) = ||x — Bull%, x is a data point, B the dictionary and
u the sparse code of x.

One way to solve this equation is to resort to an Iterative
Shrinkage/Thresholding Algorithm (ISTA) (Daubechies et al.
(2004)) that iteratively approximates the solution with:

u = T (i1 — 14V f(ug-1)), 3)

where 7, is a component-wise vector shrinkage function such
that [T,(v)]; = (vil — @)+ sign(v;), #; is the step size at iteration
k and V is the gradient operator.

Evaluating the gradient of f(«) defined above, we get:

up = Ty (i — 26 B” (Buy_y — %)),
= T, (I = 2t B" Byuy_y + 21, B ), 4)
= T, (Sup—1 + Wx),

where S =1-21B"Band W = 21, BT.

As mentioned by Gregor and LeCun (2010), this equation
can be illustrated as a recurrent block diagram as in Fig. 3, left.
Fortunately, Gregor and LeCun (2010) proposed a fast approx-
imation of ISTA called Learned ISTA (LISTA). This is an un-
folded version of ISTA with a fix number of iterations and that
can be plugged into a neural network to provide a sparse code
(see Fig.3, right). Embedding this LISTA module in our CNN is
a smart solution to learn a dictionary and sparse codes that help
to discriminate between the categories of the current dataset.

3.1.3. Dictionary based Fisher coding

When a classical GMM is used to model the data distribu-
tion, the Fisher code is based on the partial derivatives of the
posterior probabilities with respect to the weights, the mean
and the standard-deviation parameters of the model (Sdnchez
et al. (2013)). In our case, inspired by Liu et al. (2014), we
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use a particular Fisher coding, evaluated as the partial deriva-
tive of the log probability of the local features with respect to
the dictionary itself:

log(P(xIB)) _ sllx = Bu'll3 + Allu”lly
dB - dB

where u* = argmax,P(x|lu, B)P(u) (see Liu et al. (2014) for
details).

This module is very easy to insert in our deep network and
provides the pooled features from the input image. These fea-
tures are then sent to the last fully connected layers for classifi-
cation. All these modules are constituting our CNN which can
be trained end-to-end (see Fig. 1).

= (x - BuHu*', (5)

3.1.4. Mean Vector Subtraction

It is worth mentioning that, for each image, the input local
feature vectors x; are centered to have a zero mean before ap-
plying this dictionary encoding:

L
X =X,-—W(in), (6)

where HW is the number of feature vectors x;.

This pre-processing is similar to an instance normaliza-
tion Ulyanov et al. (2016) without additive parameters to learn.
It improves the generalization property of the model as ob-
served in the experimental results (see more details in Sec. ??).

3.2. Fisher vector normalization

As mentioned earlier, the second order statistics tend to ex-
cessively emphasize very few coordinates, ignoring potential
discriminant features (Lin and Maji (2017)). To cope with this
problem, many normalization solutions have been proposed. In
this paper, we take advantage of the approach proposed in (Lin
and Maji (2017)) to normalize our Fisher vectors. Below, we
first detail the solution of Lin and Maji (2017) and then, explain
its extension to non square matrices.

3.2.1. Bilinear square matrix normalization

Assuming that the network backbone provides a feature map
X € RPXPXW (see Fig.1), where H,W,D are the height, width
and depth. This set of local feature vectors can be orderless
pooled into a global feature vector by using bilinear pooling
(Gao et al. (2016)). Therefore, the feature map X is reshaped
to a 2D matrix (D x HW) where each column x; is (D X 1) a
local feature vector. Then, the output of the bilinear pooling is

evaluated as:
1 (v
_ T
A= oo (Z xix. ] 7)

i=1
Ais a (D x D) symmetric positive definite (SPD) matrix.
While element-wise square-root normalization helps in im-
proving the performance of the complete framework, Lin and
Maji have shown that the results can be further boosted by ap-
plying a spectral normalization, i.e. scaling the eigenvalues of
the associated covariance matrix (Lin and Maji (2017)). One
way to do that is to transform the matrix A to its square-root
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Fig. 4. Square-root matrix estimation with the Newton method. The inputs
are a symmetric positive definite (SPD) matrix A and the identity /. After
n iterations the outputs Y, and Z, converge into the square root matrix
A'/2 and the inverse square root matrix A~!/? of the input matrix A. One
iteration is detailed in Fig.5.
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Fig. 5. One iteration of the Newton method as presented in Eq. 8.

A2 = UZ2UT, where A = ULUT is the singular value de-
composition (SVD) of A.

However, the computation of the SVD is poorly supported on
GPUs and the authors suggest applying a variant of the Newton
method to solve F(Z) = Z?> — A = 0. Their approach is an
iterative process where each iteration is as follow:

1
Yir1 EYkGI - ZiYp),

®)
L1

1
5B = 207,

By initializing Yy = A and Z = I, Y} and Z; converge to Al2
and A~'/2 in very few iterations (even one) and requires only
matrix multiplications (no inverse). The process is illustrated in
Fig. 4 and 5.

This matrix normalization clearly improves the accuracy and
efficiency of the bilinear pooling CNN (Lin and Maji (2017)),
but it can’t be directly applied to our Fisher representation, as
shown in the next section.

3.2.2. Matrix Normalization for Fisher score representation

As previously explained, our Fisher representation is also a
second-order matrix that could benefit from spectral normaliza-
tion. From eq. 5, we know that it is expressed as:

1 (& .
A= (;(x,. — Buju, ] )

where B € RP*C is a dictionary (with C codewords) and u; €
R is the sparse code of .

This matrix A € RP*C is neither square nor symmetric and
thus, can’t be used as input for the Newton normalization that is
restricted to SPD matrices. Indeed, since A is not SPD, its SVD
is given as A = UXVT, where U # V and where £ € RP*C is
not square.

In order to apply spectral normalization, we propose to esti-
mate a so-called pseudo square root matrix A ]1) /Y iu 4, defined as:

A2 —yxl? oyl (10)

pseudo pseudo

where E;/g fu 4o 18 calculated by square rooting the diagonal el-

ements of £. Note that there is no matrix X!/? such that
T = 21/221/2.
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Inspired by (Lin and Maji (2017)), in order to avoid SVD
computation, we resort to the Newton method to evaluate such a
A}D/S iu 4, Matrix. But, since this solution only accepts SPD square
matrix as input, we transform A into a square SPD matrix D

evaluated as:
D=ATA=vzTUuTuzv? = vTzvT. (11)

Note that this transform does not depend on U.

Since X is not symmetric, we introduce a helper matrix H =
[1c0]" € RPXC, with I the C x C identity matrix, such that £
can be expressed as:

S =HE, (12)

where  is a C x C square diagonal matrix.
Hence, Eq.11 can be derived into:

D =vElsvl = vETHTHEVT = vE2VT. (13)

This equation is the SVD of the matrix D.

Feeding the previous Newton workflow with D and an iden-
tity matrix, we obtain D'/2 = VEVT and D~'/2 = VE-'VT and
feeding again this workflow with D'/? and an identity matrix,
we obtain D'/* = VE2VT and D14 = VE-1/2yT.

Finally, we have access to A2 4, thanks to:
pseudo

AD™ V4 = yzvTyE 12yt
= Uz 2vT,
= UHLE1?2yT,
= UHE'?VT,

— 1/2 T
- Uzpseudo Ve,

(14)

= A;{vzeudo'

Hence, without any SVD computation, this solution allows
us to spectrally normalize a non SPD matrix A as A;/Y iu 40 VEIY
efficiently. Furthermore, this workflow can be easily embedded
in a end-to-end trainable deep network.

Thus, we propose to apply this new spectral normalization
to our sparse Fisher encoding for classification tasks. All the
framework can be trained end-to-end. In the next section, we
propose to run extensive tests on different datasets to assess the
quality of this method.

4. Experiments

In order to show that our solution generally helps the clas-
sification performance, we run experiments on three datasets,
which vary between tasks and scales. The three datasets and
their experimental settings are detailed in Section 4.1 and 4.2.
Next, the training strategy of our network is shown in Sec-
tion 4.3. In Section 4.4, the results and comparisons will be
discussed.

4.1. Datasets

Orderless pooling methods were originally designed for tex-
ture and material recognition tasks (Lin et al. (2017); Yu and



Salzmann (2018); Zhang et al. (2017)). So we have first se-
lected a reference material dataset. Then, these approaches have
also been shown to provide good results on scene classification
as well as fine-grained image classification (Liu et al. (2017);
Lin et al. (2017); Li et al. (2017); Yu et al. (2021)). Thus, we
have also selected two dedicated datasets for these tasks. The
choice of these three datasets (detailed hereafter) is also a good
way to validate the versatility of our solution for different image
classification tasks.

The dataset MINC-2500 (Bell et al. (2015)), containing 23
commonly-seen material categories and 2, 500 images per cate-
gory, is a challenging large-scale dataset as material shows great
intra-class variability in the real-word environment. The dataset
MIT Indoor 67 (Quattoni and Torralba (2009)) is a medium
but widely accepted benchmark for indoor scene classification
task with 67 indoor categories and 100 images in each cate-
gory. The dataset CUB-200-2011 (Wah et al. (2011)) provides
11,788 images of 200 bird species and is considered as a fine-
grained classification dataset because the inter-class differences
between bird species are subtle and sometime barely noticeable.
In our experiments, we don’t use the available object bounding
boxes and part annotations. Note that we always make use of
official training-test splits released with the datasets.

4.2. Experimental settings

Deep Pooling Module (DPM) - Our DPM is composed of
a 1 x 1 convolution layer, a LISTA module with two itera-
tions (see Fig. 3), the Fisher encoding layer and normalization
process which includes matrix normalization (see section 3.1),
element-wise square root and /, normalization. Then, the DPM
is followed by a fully connected layer with softmax activation
for classification.

Depending on dataset scales and for fair comparison with
other works, we use different backbones and training strategies.

MIT-67 and CUB-200 settings - We adopt the settings of
the state-of-the-art (Yu and Salzmann (2018); Lin et al. (2017)).
The input image size is 448x448 and the backbone networks are
either the pretrained VGG-D (a.k.a VGG-16) or Alexnet. Our
DPM is plugged after the ReLU activation of the last convolu-
tional layer. The 1 X 1 convolutional layer in the DPM does not
change the input feature size and the sparse code in LISTA has
100 elements.

MINC-2500 settings - The network backbone is the pre-
trained ResNet-50 (He et al. (2016)). With the 1 x 1 convolu-
tional layer in the DPM, the input feature size is reduced to 128
and the size of sparse code in LISTA is 32. While training, we
follow the data augmentation settings from (Xue et al. (2018)).
First, the input image is resized to 256 x 256. Then we crop
each image at i) a random location with ii) a random size (be-
tween 8% to 100% of the image area) and iii) a random aspect
ratio (between 3/4 and 4/3). The crop is resized to 224 x 224
and used as the network input.

4.3. Training details

In the training phase, three consecutive steps are conducted.
First, we run a PCA on a small subset of feature vectors (around
10, 000) extracted from the backbone outputs and initialize the

Table 1. Ablation study of our workflow on the MIT-67 dataset. Essential
elements in our approach are progressively added and the accuracy(%)
given by their different combination is measured, showing their individual
contribution to the classification.

LISTA | Warm-Up | Mean Sub. | Matrix Norm. | Accuracy

76.72
77.16
80.22
80.60
80.67
v 81.24
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1 X 1 convolutional layer of our DPM with these PCA param-
eters. Second, inspired by Branson et al. (2014), we apply
a warm-up process that consists in training our DPM and FC
layer (while the backbone is frozen) with an objective function
which is the sum of the cross-entropy loss and the sparse cod-
ing loss (see Eq. (1)). Finally, the whole network is fine-tuned
end-to-end under the supervision of the sole cross-entropy loss.

The optimization algorithm is a gradient descent with a mini-
batch size of 64, a weight decay of 5¢* and a momentum of
0.9. The learning rate is 0.004 during the warm-up. During the
end-to-end finetuning, it starts from 0.004 and is divided by 10
when the training loss meets a plateau.

4.4. Results

In this Section, we provide many results in order to assess
the quality of each contribution, to measure the impact of the
hyperparameters and to compare our whole framework with the
state-of-the-art.

Ablation study - In order to measure the impact of each of
our different contributions, we propose to conduct an ablation
study. The tests are run on the MIT-67 dataset with the VGG-16
network and the results are provided in Table 1.

For this study, we propose to start from the baseline network
without contributions and to consecutively add the proposed
modules in order to assess their individual impact on the results.
When the LISTA module is not in the network, it is replaced by
a 1 x 1 convolutional layer providing the codes u;.

As introduced in Sec 4.3, our warm-up process is one of the
three steps in the training phase. The goal is to train our DPM
and the FC layer before fine-tuning the whole network. We can
see in Table 1, that this training step boosts the performance
from 77.16% to 80.22%, showing that an accurate initialization
is important for our DPM and classifier.

Likewise, we notice that the proposed matrix normaliza-
tion (called Matrix Norm. in Table 1) is one key element of
our framework since it improves the accuracy from 80.60% to
81.24%.

Furthermore, centering the deep features (Mean Sub. in Ta-
ble 1) thanks to eq. 6 also provides a slight improvement from
80.22% to 80.60%.

Finally, the impact of the LISTA module is measured with
two different tests. Starting from the baseline and adding
LISTA improves the results from 76.72% to 77.16% and adding



LISTA to the whole process helps to increase from 80.67% to
81.24%.

This ablation study is also a nice way to measure the im-
provement of our contributions over our previous work called
E2E-SCF (Xu et al. (2021)). Indeed, in Table 1, the row with
LISTA and Warm-up corresponds to our E2E-SCF. We notice
that the additive contributions help to improve the accuracy
from 80.22% to 81.24% on this dataset. Additional compar-
isons with this previous paper are proposed in Table 5 with 3
architectures and 3 datasets.

After analyzing the contribution of each element, we propose
to discuss their individual computational costs. Thus, we have
measured their inference times on the MIT-67 dataset with the
VGG-16 backbone. According to Table 2, the feature extraction
with the convolutional backbone (VGG-16, here) is clearly the
bottleneck of the framework. The inference times of our pro-
posed blocks are negligible compared to the one of the back-
bone. Among our proposed modules, the matrix normalization,
i.e. the Newton algorithm, has the highest computational cost.

Table 2. Inference time (ms) per mini-batch (64 samples) required by each
element of our framework. Backb. represents the convolutional layers used
to extract the deep features, Norm. is our matrix normalization step and
Fisher is the Fisher score encoding.

| Backb. | Mean Sub. | LISTA | Fisher | Norm. | Classif.
Time| 1493 | 07 | 53 | 37 | 309 | 08

Hyperparameters - In order to go a step further in the anal-
ysis of our framework, we propose to study the impacts of two
hyper-parameters on the results; namely the number of itera-
tions in the LISTA module and the size of the dictionary in the
sparse coding. Like the previous experiment, the tests are con-
ducted on the MIT-67 dataset with the VGG-16 network.

LISTA is an unfolded version of ISTA and the number of it-
erations is an hyper-parameter. We investigate the performance
of our framework across different numbers of iterations from
0 to 5, where 0 means that the LISTA module is replaced by
a 1 x 1 convolutional layer. In Table 3, we notice that 2 or 3
iterations provide the best performance. After 3 iterations, the
results start decreasing. Our intuition is that too many iterations
of LISTA produce sparser codes at the expense of classification
accuracy. For all the other tests in this paper, 2 iterations are
used.

We also conducted an analysis on the number of codewords
(dictionary size) required in the LISTA module. We measure
the classification accuracy for a range of codeword numbers
from 50 to 512 in Table 4. We notice that, due to overfitting,
when the number of codewords is higher than 100, lower accu-
racy is observed. The default value for the next tests is 100.

Comparison with state-of-the-art - The top-1 classification

Table 3. Impact of the number of iterations in LISTA on the accuracy(%).
Iter. number | O | 1 | 2 | 3 | 4 | 5
Accuracy | 80.67 | 81.04 | 81.24 | 81.34 | 81.04 | 80.30

Table 4. Impact of the dictionary size on the accuracy (%).
Dic. size | 50 | 100 | 200 | 300 | 400 | 512
Accuracy | 80.37 | 81.24 | 80.90 | 80.00 | 80.22 | 80.22

accuracy of our approach and many alternatives are provided in
Table 5. The results of the related works are directly extracted
from the reference papers cited in the Table. Note that our CNN
is trained on single-scale images while many state-of-the-art ap-
proaches are trained on multi-scales, so we have carefully se-
lected the results that allows fair comparisons, but still some
results in Table 5 are from multi-scale training (see comments
in Table 5).

The methods called Off-the-shelf use independent modules
that are not fine-tuned together while the Finetuned group con-
tains approaches that use end-to-end trainable networks. We
notice that the results provided by fine-tuned networks overall
outperform those of the Off-the-shelf solutions. This shows that
it is better to make the modules work together to optimize the
same loss instead of independently optimizing them. Besides
end-to-end learning attribute, our approach is built upon Deep
Fisher Score Representation via Sparse Coding (SCFVC Liu
et al. (2014)) and our E2E-SCF (Xu et al. (2021)) which pro-
duce more discriminant second-order pooled features than the
classical Fisher vector or VLAD. We can see in Table 5 that the
proposed smart combination of these two advantages make our
method outperform the alternatives for all the tested datasets
and backbones.

5. Conclusion

In this paper, we have proposed a complete workflow to ex-
tract second order statistics from images in the context of image
classification. The approach is based on Fisher encoding which
requires a data distribution fitting with Gaussians. We have first
proposed to sparsely encode the Gaussian centers in a learned
basis in order to improve the data fitting. Second, since the
second order features require a spectral normalization before
being used for classification, we have introduced an original
matrix normalization based on a Newton algorithm. The main
advantage of these two modules is that they can be embedded
in a deep network that can be trained end-to-end. We have also
proposed a training strategy that can easily initialize the net-
work parameters before finetuning. Many experimental tests
clearly show that our method outperforms the recent alterna-
tives on three different datasets. The proposed non-SPD matrix
normalization can be exploited to improve other second order
statistics features such as those provided by compact bilinear
coding. This is the aim of our future works.
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