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Abstract—With the rise of Convolutional Neural Network
(CNN) in the recent years, image classification has shown out-
standing performances in the computer vision field. Many well-
known state of the art’s CNN architectures such as the ResNet
family are applying a Global Average Pooling (GAP) to reduce
the number of parameters of the fully connected layers. Most of
the time, this pooling operation helps to prevent overfitting but
we claim that it has a serious weakness for specific images where
small details are crucial to predict their category, such as material
images. In this case, the details are lost in the global average,
providing non accurate global features. In this paper, we propose
to select the most important local features before applying the
GAP. In this aim, we add a branch in the classification network
that predicts the confidence the network should have in each
local feature vector. The less confident features are filtered out
before applying the GAP. Experimental results on three datasets
show that our approach outperforms recent alternatives in terms
of classification accuracy and output probability calibration.

Index Terms—Network confidence, Global Average Pooling,
Probability calibration, Material Classification.

I. INTRODUCTION

Image classification consists in predicting a single class for
each input image. Today, the most successful approaches rely
on automatic extraction of local features with deep neural
networks followed by a Global Average Pooling (GAP) layer
that merges all the local features into a single global feature
vector [1]. Then, a fully connected layer predicts the image
class from this global feature vector. With this classical
approach, each local feature vector equally contributes to the
final decision through the averaging operation. Consequently,
when large areas of the images are ambiguous or when
useful information is mainly provided by fine image details,
averaging all the local features could lead to bad predictions.

This phenomenon is exemplified here in the context of
material or texture classification. Indeed, as illustrated in
Fig. 1, large parts of an image can be ambiguous when it
comes to identify the material of the pictured object which
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can lead to bad predictions. Contrastively, some other areas
are very informative and should be emphasized. On the left
column of Fig. 1 some small parts of the images are masked
making the class prediction very difficult. When one has access
to these details (right column), class prediction becomes much
easier.

Class = stone ?

Class = water

Class = plastic ? Glass ?

Fig. 1. Images from the Flicker Material Dataset [2], showing that, sometimes,
some details are essential to predict the correct class while large areas are
ambiguous.

In this paper, we propose a method to automatically select
the most informative local feature vectors before applying the
GAP layer. The objective is to ensure that the most relevant
features contribute to the final decision while the less infor-
mative ones are ignored. We hypothesize that the usefulness
of each local feature vector is related to the confidence of
the network when predicting the image class from this feature
vector. Thus, we train a two-branch network to output local
predictions as well as associated confidences. These predicted
confidences are used to filter out the local feature vectors
having lower confidence predictions before averaging all local
features into a global feature vector (see Fig. 2).

Our contributions are multiple:

e we address the problem of Global Average Pooling in
the context of material classification by weighting local
features;

« we adapt a very recent and successful approach, designed
for global failure prediction [3], to local feature confi-



Selection

(ResNet)

FC
layers

—_—

I

-#

Confidence)
prediction

Fig. 2. The workflow of the proposed approach. See text for details.

dence prediction;

« we improve the calibration of the output probabilities for
material classification;

o we provide both quantitative and qualitative results on
three datasets.

II. RELATED WORKS

This section reviews the works related to material classifica-
tion, Global Weighted Average Pooling, confidence prediction
and probability calibration.

A. Material classification

In the early of 2000’s, material and texture classification
tasks have benefited from the success of the global descriptors
such as Bags-of-Words [4] and Fisher Vectors [4] that are
based on an orderless aggregation of local features. With
the recent advances of deep neural networks in image clas-
sification, new solutions appeared to automatically extract
bags of deep features from images. They are obtained by
computing the Fisher vectors of deep local features [5], by
using RBF neurons in an end-to-end trainable solution [6]
or by designing residual encoders such as VLAD and Fisher
Vectors in an end-to-end learning framework [7], [8]. These
orderless aggregation of local features can also be the input
of a second multi-layer neural network [9], or combine with
global features [10]. A recent study has also proposed to
aggregate the class activation of each local patch in the image
in a global feature vector [11]. Finally, classical deep networks
have also been used for material classification with good
results by using transfer learning [12].

B. Global Weighted Average Pooling

In order to cope with the drawback of the Global Aver-
age Pooling (GAP), Qiu [13] has proposed to weight the
contribution of each local feature vector and to compute a
Global Weighted Average Pooling (GWAP). The main problem
of this solution is that it increases the number of trainable
parameters without adding any supervision, increasing the
risk of overfitting. Indeed, the weights in [13] are learned
by back-propagating the gradient of the classification loss.
On the contrary, our solution consists in supervising the
weight learning with a confidence map, as detailed in the

next section. We show in the experimental section, that our
approach outperforms the GWAP proposed by Qiu.

C. Confidence prediction and probability calibration

An intuitive way to assess the confidence of a network
prediction would be to check the output probability distribution
over the classes. Unfortunately, it has been shown that the
softmax probabilities of deep neural networks are not well-
calibrated and modern models are clearly overconfident [14].
This is checked in the experimental section, where we show
that the classical maximum probability or entropy do not allow
to select the important features.

Guo et al. have proposed to calibrate the output probabilities
of deep neural networks by modifying the classical soft-
max function with a temperature scaling [14]. Increasing the
temperature parameter softens the softmax, leading to lower
confident prediction, without modifying the model accuracy.
This approach is also tested in our experimental section.

Gal and Ghahramani approximate a Bayesian neural net-
work by using Drop-Out at inference time in order to get
a distribution over the outputs [15]. The uncertainty of the
network is deduced from the variations of the probabilities for
the same sample with different Drop-Out. This approach is
interesting but requires to feed several times the network with
the same sample at test time. We also provide results for this
approach on our data in the last section.

De Vries and Taylor propose a smart approach to predict
the confidence of a neural network [16]. Their idea consists in
letting the network partially access to ground truth information
during training. The level of knowledge it is asking for, is
related to its uncertainty. Through this approach looks very
simple, it is not easy to optimize in practice as mentioned by
the authors.

Very recent approaches have proposed to train networks to
predict the confidence along with the class prediction [3], [17].
The method that gave us inspiration for our problem is the one
proposed by Corbiere et al [3]. In this work, the ground truth
confidence is defined as the True Class Probability (TCP), i.e.
the probability returned by the network for the ground truth
class (which can be different from the predicted class) of the
given input image. This is detailed in the next section. This
concept is very similar to the work of Yoo and Kweon [17]



who train a branch of their network to predict the loss of each
prediction. This value is clearly related to the confidence but
the weakness of this loss prediction is that it is not normalized,
compared to the TCP that is in the range [0, 1].

It is worth mentioning that these previous works about con-
fidence prediction have been proposed in other contexts than
ours, namely failure prediction [3] and active learning [17].
Furthermore, these approaches were applied to whole images
while the aim of our work is to predict local confidences in
order to select the best local features inside one image.

III. OUR APPROACH

A. Deep neural network with Global Average Pooling

Let denote a training sample as (I,y) where T € RW>#x3
is an RGB image and y € Y = {1,...,K} is its ground
truth category. Recent deep networks such as the ResNet
series can be decomposed into three parts: the feature extractor
feonw constituted by convolutional layers, the Global Average
Pooling (GAP) f,.4 that discards any spatial information and
a fully-connected (FC) layer fr¢ followed by a Softmax func-
tion returning the predicted distribution p of the probabilities
over all the classes:

[3(1) = Softmam(fFC(favg(fconv(I))))' (1)
Note that P(I) is a K-dimensional vector p =
[pAhpAQa ,p}(]

While training the network, the parameters are updated
in order to minimize the cross-entropy loss (over a batch
of images) L..(p,P) between the ground truth hot-vector p
(deduced from y) and the predicted p.

Since the FC layer and the GAP layer are linear transforms,
they can be switched in the process so that the FC layers are
applied before the GAP. The predicted probabilities are then:

f)(I) = Softmax(favg(fFC(fconv(I))))' (2)

Obviously, in this case, the fully-connected layer is applied
individually to each local feature vector returned by feony, in
the form of 1x1 convolutions, as shown in the left workflow
of figure 4. This formulation is interesting for our approach
since it represents individual processing of each feature vector.

This architecture has shown very good results in many
classification applications, but it might not be the optimal
solution for material image classification. Indeed, as discussed
in the introduction and confirmed in many successful orderless
aggregation solutions proposed for this task; large areas of
material images can be ambiguous about the class of the
considered image, while some details appear to be very
discriminative. A simple average of all the local features into
a global vector can lead to useful information lost.

This is illustrated with the two images from Fig. 3, where
we propose to have a look at the map prediction provided by
the network without applying the GAP:

Pmap(I) = Softmaz(frc (feon(T))), 3)

where each local feature vector v; is associated with one local
prediction at the 7*" location in the map:

P(Vi) = Pmap; (D) 4)

The first column of this figure shows two images with their
ground truth category. The second column shows, for each
local feature vector v;, the category ¢(v;) that locally gets the
maximum score as well as its score py (v;):

9(vi) = argmax p(vi), &)
key
py(vi) = Il?ea));(ﬁk (vi)- (6)

The color legend for the category is shown at the bottom of
the figure and the lightness of each color is related to its score
py(vi), i.e. dark colors mean that the associated probability is
low whereas lighter colors represent high probabilities.

Below each illustration, we mention the three most probable
categories provided by the whole network, including the
GAP. In this classical case, each image gets a single global
probability vector and these three mentioned categories are the
ones that get the highest probabilities. We can see that, for
both examples, the most probable category is not the ground
truth one, leading to a bad classification for these images.
We can also notice that most of the local predictions are
associated with very light colors, showing that the network
is overconfident in most of the cases, even for non-correct
predictions.

Input image

Maximum probabilities Confidence-weighted
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Fig. 3. Local decision maps for two different images. The two right
columns show the categories and scores of the locally maximum probabilities
before (second column) and after (third column) weighting them with the
corresponding local confidences.

As illustrated in the last column of Fig. 3, our aim is to
select the most important local feature vectors, and remove
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Fig. 4. The two successive training steps. See text for details.

the least ones, before applying the GAP in the network. We
propose to relate the “importance” of each local feature vector
to its associated class prediction confidence.

B. Predicting local confidences

In order to select the most important local feature vectors,
we propose to train a branch of our network to predict the
confidence of the category prediction related to each local
feature vector. In this aim, we take inspiration from [3] that
deals with failure prediction in image classification task. In
this paper, the authors tried to find out images potentially
misclassified by estimating the True Class Probability (TCP)
along with the category prediction. We propose to adapt this
approach in order to predict local TCP that help us to select
the most confident local feature vectors.

As defined in [3], the TCP is the predicted probability of
the ground truth category y of the considered image:

TCP(v;€1) = ﬁk:y(l) @)

Given a local feature vector, a high TCP means that this
vector leads to a prediction that gives a high probability to
the correct class, which means that we should trust it. On
contrary, if the TCP of a local feature vector is low, it means
that it predicts a low probability to the correct class and, so,
should not be considered in the final global decision.

Obviously, at test time, the ground truth category is not
available and therefore neither is the TCP. Thus, we propose
to add a branch fcon s in our network whose aim is to predict
the TCP of each local feature vector. As illustrated on the right
of Fig. 4, the input of this branch is the feature map extracted
from the image and its output is a predicted TCP map:

T@ap(]:) = fconf (fconv (I)) (8)

The idea of this new branch is that the network is learning
if some local features are rather ambiguous or not with respect
to the category they predict. The details about the structure of
feony are available in the next section.

Thus, if the network is able to automatically predict the TCP
of each local feature vector, we can use these predictions as
the confidence we should have in each vector and select the
most confident ones before applying their average (see Fig. 2).

In order to illustrate the intuition of our idea, we show
in the last column of Fig. 3 how the local probabilities are
transformed when they are weighted by their corresponding
predicted confidence (TCP). It is worth mentioning that this

TABLE 1
THE TWO STEPS OF THE PROPOSED LEARNING SCHEME.
Step Loss | Frozen parameters | Learned parameters
Step 1 Lece fconf feonv + frc
Step 2 Lconf fconv + fFC conf

weighting scheme is just presented for illustration. In practice,
the confidences are used to select the most confident local
feature vectors, with a threshold, as detailed below.

C. The training process

The whole training process is composed of two steps as
shown in Fig 4. During the first step, the classification network
is trained with the cross-entropy loss L... After reaching
convergence, the parameters of the trained network are frozen
and the confidence prediction branch is trained. To this end, we
feed the classification network with images and their ground
truth category in order to evaluate their ground-truth TCP map
TCP,,.p, (confidence map). Then, we train the confidence
prediction branch feo,s so that it is able to automatically
predict the TCP map for each image by minimizing L, ¢, the
mean square error between the ground truth map TCP,,,,
and the predicted one ’I/‘C\Pmap. A summary of the two
training steps is provided in Table L.

IV. EXPERIMENTS

In this section, we present the experimental results provided
by our approach in a material classification task. The tests are
conducted over three datasets and the results are compared
with recent alternatives.

A. The datasets

Three classical material datasets are used for testing. The
Flicker Material Dataset (FMD) [2] is a popular benchmark
material dataset which contains 10 categories and 100 images
per category (see Fig. 1 and 3 for image examples and class
names). KTH-TIPS-2b [18] (called hereafter KTH) has 11
categories with 432 images for each category and the 4D-light
dataset [19] is a light-field material dataset which consists of
12 categories with 100 images per category.

For FMD and 4D-Light, we run a 5-fold experiment by
splitting the dataset into 5 non-overlapping subsets. For each
run, 4 subsets are used for training and 1 for testing. For KTH,
following the experiments from [8], we randomly choose half



TABLE II
THE RESULTS OF THE TESTED APPROACHES ON THE THREE DATASETS. AVERAGES OVER 5 RUNS.

FMD KTH 4D-Light
Approaches ECE NLL Accuracy (%) | ECE NLL Accuracy (%) | ECE NLL Accuracy (%)
Baseline 0.080 0.517 83.2 0.060 0.54 82.1 0.074 0.537 83.1
Baseline (90% Training) 0.087 0.543 83.1 0.064 0.55 81.9 0.061 0.535 83.0
Temperature (90% Train./10% Val.) | 0.071 0.529 83.1 0.120 1.20 81.9 0.049 0.532 83.0
Entropy 0.070 0.510 83.1 0.060 0.54 82.1 0.073 0.537 83.1
MaxProb 0.079 0.517 83.2 0.060 0.54 82.1 0.074 0.537 83.1
MCDropout 0.081 0.516 83.0 0.060 0.54 82.2 0.073 0.537 83.0
GWAP 0.067 0.525 83.3 0.063 0.55 81.7 0.063 0.529 84.0
Confidence prediction (Our) 0.061 0.470 84.8 0.058 0.52 83.1 0.058 0.527 84.8

of the images for training (216 per category) and half for
testing. The results are also averaged over 5 runs.

B. Tested approaches

Our method is compared with several recent and classi-
cal approaches. The baseline is a classical network without
weighting scheme as illustrated in the left of Fig. 4 (first step).

Since output probability calibration is one aim of our frame-
work, we propose to compare our results with the temperature
scaling solution [14]. As recommended by the authors, this
approach required a validation set to fix the temperature. Thus,
for this method, about 10% of the images for each category
are randomly extracted from the training set to constitute the
validation set. The test set is the same for all the approaches
for fair comparison. The baseline is also tested on this reduced
training set (mentioned as ”90% Training” in the Tables) for
information.

The entropy of the predicted class probabilities could
be seen as a confidence score and is used in some recent
papers [20], [21]. Indeed, a peaky prediction vector (low
entropy) means that the network is confident in its prediction
while a flat probability vector (high entropy) shows that the
network is hesitating between the different classes. In our
experiment, we propose to compare our method with a local
selection based on the entropy of each local classification
prediction. In the experiment, we have chosen the threshold
that performs best for this approach. We have also tested the
maximum probability (MaxProb) as a confidence measure.

The Monte-Carlo Dropout approach [15] is denoted MC-
Dropout in the Tables.

The Global Weighted Average Pooling (GWAP) is similar
to our approach, except that it predicts a score map without
any additive supervision than the classification loss [13]. In
this case, the architecture is similar to our proposed solution
with two branches that are simultaneously trained with a single
cross-entropy 1oss L.

Finally, we are also presenting the results of state-of-the-art
approaches on the respective used material datasets. Even if
the architectures are different, the results inform us about the
best current results provided on these datasets.

C. Experimental settings

For all the tested models, the network backbone is ResNet-
50 [1] pretrained on the ImageNet dataset [22].

Our confidence prediction block feon¢ is composed of
3 successive 3x3 convolutional layers with respectively 384
kernels with ReLu, 192 kernels with ReLu and 1 kernel with
a Sigmoid. The input of this block is the concatenation of the
feature maps from the two last convolutional blocks of the
backbone.

As previously explained, the aim of our solution is to filter
out the least confident local feature vectors before applying
the GAP. One threshold has to be fixed in order to decide
which vectors should be discarded. For all our experiments,
we have chosen to remove the feature vectors whose associated
predicted confidence is lower than 0.2. This threshold is fixed
for all the runs and all the datasets.

As recommended, for all the approaches, channel-wise
normalization is applied (zero mean and unit variance) as a
pre-processing. For data augmentation, all images are resized
to 384x384. 8% to 100% of the area of each image is randomly
cropped, transformed with a random aspect ratio between %
and % of the original aspect ratio, and resized to 352x352.
Additionally, a 50% chance horizontal and vertical flip is
applied. At test time, we just use the images with their original
sizes.

We use Adagrad as optimization algorithm with a mini-
batch size of 8. The learning rate starts from 0.01 at step 1
and from 0.001 at step 2 and is divided by 10 each time the
training loss meets a plateau.

D. Results

The first results are presented in Table II, where three
criteria are provided: the classification accuracy, the Expected
Calibration Error (ECE) [23] and the Negative Log Likelihood
(NLL) [14]. ECE and NLL are both measuring the degree of
miscalibration of the output probabilities. They are low for
well calibrated probabilities.

In this Table, we can see that the temperature scaling overall
actually improves the output calibration over the baseline with
the same settings, while preserving the accuracy. Indeed, the
single aim of this approach is to calibrate the output prob-
abilities of the network without modifying the classification
accuracy of the baseline, since the probability ranking is not
modified by this scaling. Nevertheless, for the KTH dataset, we
can see that the scaling does not improve the calibration. We
think that it is due to the high diversity within each category
of this dataset, that makes difficult to estimate the temperature



TABLE III
COMPARISON OF THE CLASSIFICATION ACCURACY (%) WITH THE
STATE-OF-THE-ART SOLUTIONS ON THE THREE DATASETS.

Approaches FMD KTH 4D-Light
LFV+FC-CNN [9] 835 831 -
Deep Ten [8] 80.2 82.0 84.1
FV-CNN [5] 824 81.1 82.6
B-CNN [24] 80.5 80.2 84.3
Confidence prediction (Our) 84.8 83.1 84.8

scaling on the validation set. Interestingly, the entropy-based
approach also reduces the calibration error on FMD but does
not improve the accuracy over the baseline. Overall, entropy-
and maximum probability-based approaches have very small
impacts on the results. The GWAP approach provides mixed
results for the calibration quality and slightly improves the
accuracy. We can notice that our approach clearly outperforms
all the tested methods for the three criteria. Indeed, by dis-
carding the least confident local feature vectors, our model is
able to predict calibrated and accurate probabilities. It is worth
mentioning that the architectures of our solution and GWAP
are identical. This clearly shows that supervising the second
branch with the True Class Probabilities is a good solution to
predict accurate confidences and select the best local features.

Finally, we propose to compare the accuracy provided
by our method with state-of-the-art solutions designed for
material classification (see Table III). The reported results have
been extracted from the published papers, when available.
Despite the simplicity of our approach, we notice that it
outperforms all the recent state-of-the-art solutions designed
for material classification. These results confirm that it is very
interesting to concentrate the category decision on specific
areas of material images and that predicting the confidence
of each local feature vector is a smart way to do that.

V. CONCLUSIONS

In this paper, we have proposed an original solution for
material classification. Since material images present large
ambiguous areas that do not help or even disturb the classifi-
cation process, our idea consists in removing these parts from
the feature maps before taking the average final decision. To
this end, we propose to add a branch in the classical network
in order to predict the confidence associated with each local
feature vector. This branch is trained to predict the True Class
Probability (TCP) during the learning step. This TCP can be
seen as a confidence and allows us to filter out ambiguous
or disturbing local feature vectors before applying the Global
Average Pooling. Experimental results on three datasets show
that our solution outperforms the alternatives and the classical
models for both the accuracy of the network and the output
probability calibration. In order to select the most confident
feature vectors, a fixed threshold has been used in this paper.
Future works will consist to train the network to predict this
value.
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