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Abstract: Material classification is similar to textures classification and consists in predicting the 1

material class of a surface in a color image, such as wood, metal, water, wool or ceramic. It is very 2

challenging because of the intra-class variability. Indeed, the visual appearance of a material is 3

very sensitive to the acquisition conditions such as viewpoint or lighting conditions. Recent studies 4

show that deep convolutional neural networks (CNN) clearly outperform the hand-crafted feature 5

in this context but suffer from a lack of data for training the models. In this paper, we propose two 6

contributions to cope with this problem. First, we provide a new material dataset with large range 7

of acquisition conditions so that CNN trained on this data provide features that can adapt to the 8

appearance diversity of the material samples encountered in real-world. Second, we leverage the 9

recent advances in multi-view learning methods to propose an original architecture designed to 10

extract and combined features from several views of a single sample. We show that such multi-view 11

CNN significantly improves the performance of the classical alternatives for material classification. 12

Keywords: Material classification; Multi-view learning; Texture analysis; Visual appearance; Material 13

dataset. 14

1. Introduction 15

Material classification is a visual recognition task closely related to texture classification 16

and dedicated to classify input texture/material images into categories such as fabrics, 17

wood, steel or cotton [1]. It is of great interest to computer vision because predicting the 18

material of objects in a scene can help for many applications : object manipulation by 19

a robot, automatic waste sorting, predicting the appearance of an object under different 20

lighting conditions, object recognition, ... 21

However, this is still a challenging problem since material images show a large intra- 22

class variability [1,2]. First, the visual appearance of a material or a texture sample may 23

significantly vary across viewing and lighting conditions. This is illustrated in Fig. 1, where 24

each column represents the same sample, but observed under different lighting conditions 25

and viewpoints. Second, different samples made from the same material can have different 26

visual features, even when observed under similar conditions. This is the case, for example, 27

of the two wool samples displayed in columns 2 and 3 of Fig 1. These two problems are very 28

important for material recognition tasks and make it very challenging to extract relevant 29

features from color images. 30

Recent studies have shown that deep neural networks clearly outperform many 31

alternatives for material classification, but it is also clear that their performances are highly 32

related to the data on which they are trained and tested [1–3]. For a material dataset 33

showing small variations across acquisition conditions, a deep network can easily learned 34

the specific features of each material and provide a very good recognition accuracy. When 35

high variability exists in the acquisition conditions of the images (as for real world material 36

appearance), we show, in this paper, that the performances can significantly drop. The first 37

contribution of this paper is the constitution and provision of a dataset of material images 38

with large intra-class variability, see Section 3.1. This dataset is called UJM-TIV (UJM is 39

the abbreviation of our university, and TIV stands for Textures under varying Illumination, 40
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pose and Viewing). In this paper, we leverage this dataset to confirm that current classical 41

neural network solutions do not generalize sufficiently to new data for real-world material 42

observations. We hope that such a new diverse dataset will help to learn better material 43

features in the future. 44

Aluminium Wool Wool Wood

Figure 1. Appearance variation across acquisition conditions. The images of each column contain the
same sample under different (lighting or viewpoint) conditions. These images are extracted from our
new dataset.

Then, in order to go a step further towards better generalization of deep features for 45

material classification, we propose to exploit a multi-view learning solution. Indeed, since 46

one image provides a single view of a material sample, we claim that the performance could 47

be significantly improved by considering a set of images for each material sample. Indeed, 48

when a human being tries to determine the material that constitutes an object, he often tends 49

to vary his point of view by moving his head or manipulating the object when possible 50

to vary viewpoint and light direction. We propose to mimic this natural behaviour by 51

taking advantage of the recent advances in multi-view learning [4] which makes it possible 52

to extract features from several images and to merge them into a relevant representation. 53

To the best of our knowledge, this is the first time that a multi-view learning approach is 54

applied to material images in order to tackle the problem of appearance variations across 55

viewing conditions. 56

Our contributions are fourfold: 57

• we analyze the current material datasets and show that they do not have enough 58

intra-class diversity for material classification tasks, 59

• we provide a new public material dataset with high variations across acquisition con- 60

ditions (lighting and viewpoint) in order to better represent the multiple appearances 61

of a single real world material sample, 62

• we propose to exploit a multi-view learning approach to extract features from a set 63

of images of the same material sample and to merge them into an accurate material 64

representation, 65

• extensive tests on two material datasets show that exploiting multiple views of the 66

same material sample clearly outperform the single-view alternative. 67

In Section 2 we present state of the art solutions designed for material classification 68

and multi-view learning and discuss the different public material datasets. Next, Section 3.1 69

is devoted to the description of our new dataset. We detail the used materials, the lighting 70

conditions, the acquisition device and the viewing conditions. We show why this dataset is 71

more adapted for multi-view learning than the classical KTH-TIPS2 dataset [5] or any other 72

existing datasets. Next, in Section 3.2, we present a deep network architecture designed for 73
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two-view learning and test it on two material datasets, showing that it outperforms the 74

alternative deep single-view classifier. The experimental results are reported in Section 4. 75

Lastly a conclusion is drawn and future research directions are indicated in Section 5. 76

2. Related work 77

2.1. Material classification 78

Several categories of method have been proposed in the state of the art. The first 79

ones were related to pattern recognition based methods, i.e. the computation of image 80

features such as textons [6,7]. Next, filter banks based methods were proposed. They are 81

related to the computation of local texture features [8–12]. Then, local texture features 82

aggregation methods, like bags-of-textons [13], were introduced, they were designed in 83

order to compute global texture features. 84

Some recent papers demonstrated the efficiency of CNN methods for material recogni- 85

tion (e.g. [14]) and the superiority of deep networks and off-the-shelf CNN-based features 86

(e.g. [15]), particularly with non-stationary spatial patterns, such as textures, and in the 87

presence of multiple changes in the acquisition conditions, against traditional, hand-crafted 88

descriptors [1]. In [3] a selection of CNN architectures were evaluated and compared on 89

various widely used material databases and achieved up to 92.5% mean average precision 90

using transfer learning on MINC 2500 material database. In [1] a selection of state-of-the-art 91

solutions (LFV+FC-CNN [16], Deep Ten [17], FV-CNN [18], B-CNN [19]) designed for ma- 92

terial classification were evaluated and compared on various datasets (FMD, KTH-TIPS-2b, 93

4D-Light). The best classification accuracy obtained with these networks was around 83.% 94

only for the KTH-TIPS-2b dataset. 95

Until recently most of material classification methods used only a single view image 96

as input, or combined few single view image features as input. For example in [20] the 97

authors used a multi-modal sensing technique, leveraging near-infrared spectroscopy and 98

close-range high resolution texture imaging, to perform material classification. 99

In [21,22] the authors demonstrated that the concept of photometric stereo acquisition 100

could improve the efficiency of material classification methods. They showed how micro- 101

geometry and reflectance property of a surface could be used to infer its material. Likewise, 102

Maximov et al. [23] and Vrancken et al. [24] demonstrated that combining different lighting 103

and viewing conditions could slightly improve the material classification task. 104

In the ideal case, one would like to predict what would be the appearance of a material 105

whatever the viewing direction and other factors having an impact on the capturing process. 106

It is a quite challenging, ill-posed and under-constrained problem that remains hard to 107

solve for the general case [2]. 108

2.2. Multi-view learning 109

The aim of multi-view learning is to extract accurate features from data of different 110

modalities (color image, text, audio, Lidar, ...), or representing different views of the same 111

sample (different languages for texts, different acquisition conditions for images, ...) [4]. 112

Very accurate features can be extracted from images with convolutional neural net- 113

works (CNN) and many approaches have integrated multi-view learning in the CNN [4,25– 114

27]. The idea is to aggregate CNN features from different views into a more accurate 115

general representation. Two main approaches based on multi-view CNN exist, as presented 116

in [4]: the so called one-view-one-net mechanism uses one network per view and aggregates 117

all the features through a fusion process [25,26] while the multi-view-one-net mechanism 118

feeds a single network with all the views to extract features [27]. For the one-view-one-net 119

solutions, the first networks used to extract the features usually share their weights in order 120

to minimize the number of learned weights. The crucial points of such approaches lie in the 121

feature fusion process. The main question with the multi-view-one-net solutions is about 122

the aggregation of the inputs images before feeding the single network. The straightfor- 123

ward approach consists in concatenating these images into a multi-channel image and to 124

apply convolutions on this image. This means that local features are extracted at the same 125
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locations in these images, which requires a coarse registration between the images in order 126

to get consistent features. Second, such a concatenation prevents the use of pre-trained 127

networks that are usually fed with 3-channels images. This is the reason why, in this paper, 128

we have chosen a one-view-one-net approach with a specific architecture. 129

Even if each element of our designed network has been carefully selected, the contri- 130

bution of this paper is not in the definition of a new architecture for a general multi-view 131

CNN. The main aim is rather to show that multi-view learning is an appropriate solution 132

to tackle material classification. To the best of our knowledge, this is the first time that a 133

multi-view CNN is used for this task. 134

2.3. Material datasets 135

Several categories of texture/material dataset have been introduced over the years. 136

Some image sets were collected in lab settings from cropped stand-alone samples (eg 137

CUReT [28] in 1999, KTH-TIPS [29] in 2005), meanwhile others were collected in the wild 138

(eg FMD [30] in 2009, OpenSurfaces [31] in 2013, MINC [32] in 2015 and LFMD [33] in 139

2016) with more diverse samples and real-world scene context. The number of classes 140

and the number of samples in each class vary a lot from one dataset to another one (eg 141

10 classes/810 images in total for KTH-TIPS, 61 classes/5612 images in total for CUReT), 142

likewise the diversity of input parameters vary also significantly (eg small viewpoint 143

changes in KTH-TIPS, higher viewpoint changes in CUReT) [34]. The KTH-TIPS (Textures 144

under varying Illumination, Pose and Scale) image database was created to extend the 145

CUReT database by providing variations in scale [29]. 146

KTH-TIPS2 is an extension of KTH-TIPS [5] database. The KTH-TIPS2 contains 4 147

physical samples of 11 different materials (same material classes as KTH-TIPS) [35]. As the 148

KTH-TIPS dataset it provides planar images with variations in scale, as well as variations 149

in pose and illumination. From one physical sample to another one there is in some classes 150

some strong (intra-class) variations (eg between wool or cracker samples) meanwhile for 151

some other classes intra-class variations are lower (eg. between wood or cork samples). 152

There is also some similitude between cotton and linen classes (ie. a small inter-class 153

variance). In CUReT, only a single material instance is provided per class, consequently no 154

generalization can be done to classifying material categories, due to a lack of intra-class 155

variation. Changes in KTH-TIPS2 induced by a change of viewing directions or by a change 156

of lighting conditions are respectively illustrated in Fig. 2 and in Fig. 3. 157

In most of material datasets the viewing and lighting conditions, and the camera set- 158

tings, are well controlled and image acquisition is performed by a technician (a photograph) 159

who takes care to perform the best acquisition (e.g. to minimize the blur, to minimize 160

specularities) with the available setup system. But for some materials, such as aluminium 161

foil samples, this is very challenging as this kind of material is very reflective. 162

Our aim was therefore to create a new dataset giving greater flexibility to the user 163

in the images acquisition process. Our main objective was to perform images acquisition 164

under various lighting and viewing directions, rather than under very strict and well 165

controlled (and limited) lighting and viewing conditions. We assume that from one viewing 166

direction to another one the average lightness of the sample may differ, as illustrated in 167

Fig. 4(f) in comparison with 4(h). Lightness/color invariance is one of the invariance 168

properties that a material classifier should have. We also assume that from one viewing 169

direction to another one the contrast of the sample may differ, depending of the roughness 170

and thickness of the materials, as illustrated in Fig. 4(a) in comparison with 4(e). Contrast 171

invariance is one of the invariance properties that a material classifier should also have. 172
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(a) (b) (c)

(d) (e) (f)

Figure 2. Changes of visual appearance of a white bread and wool sample from KTH-TIPS2 dataset
under various lighting and viewing directions. Images (a) to (c) were captured with frontal illumina-
tion direction and frontal, 22.5° right and 22.5° left viewing directions, respectively, for a white bread
sample. Similarly, images (d) to (f) were captured with frontal illumination direction and frontal,
22.5° right and 22.5° left viewing directions, respectively, for a wool sample.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Changes of visual appearance of a white bread and wool sample from KTH-TIPS2 dataset
under various lighting and viewing directions. Images (a) to (d) were captured with frontal viewing
direction and frontal, 45° from top, 45° from side and ambient illumination condition, resp., for a
white bread sample. Similarly images (e) to (h) were captured with frontal viewing direction and
frontal, 45° from top, 45° from side and ambient illumination condition, resp., for a wool sample.

The fabric dataset introduced in [22] illustrates another kind of lightness shift due to 173

a lighting field (an array of 12 LEDs) which is not spatially uniform on the sample area. 174

This dataset contains 1266 samples which belong to one of the following fabric classes: 175

cotton, terrycloth, denim, fleece, nylon, polyester, silk, viscose, and wool. The number of 176

samples in each class is very unbalanced (588 in the cotton class, 32 in the terrycloth class). 177

The samples were acquired under near-grazing illumination from a frontal view only. To 178

perform photometric reconstruction the setup was geometrically calibrated. 179
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Changes of visual appearance of a white bread sample under various lighting geometries
and viewing directions. Images (a) to (d) were acquired under with same lighting direction (90°).
Images (e) to (h) were acquired under with same viewing direction (90°). For images (a) to (d) the
lighting direction is fixed at 90°and viewing directions are 90°, 60°, 35°, and 10°, respectively. For
images from (e) to (h) the viewing direction is fixed at 90°and lighting directions are 90°, 65°, 45°, and
20°, respectively.

Playing with lighting and viewing conditions, we can increase the difference of visual 180

appearance for a material sample. In this paper we claim that the diversity of visual 181

appearances of a material sample over acquisition condition variations should be accounted 182

in the final feature vector to optimize the classification accuracy. For example, image 183

differences observed in Fig. 6 are more significant than those observed in Fig. 5 as higher 184

viewing and lighting angles were considered in the UJM-TIV dataset than in the KTH-TIPS2 185

dataset (see complementary information provided in Tables 1 and 2). 186

(a) view 1 (b) view 2 (c) view 3

(d) view 4 (e) view 5 (f) view 6

Figure 5. Images used for different views for a sample of cotton from KTH-TIPS2 dataset.
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(a) view 1 (b) view 2 (c) view 3 (d) view 4

Figure 6. Images of a sample of cotton as different views from UJM-TIV dataset

In next section, we present the details of our new datasets and the way we propose to 187

exploit multiple views of a single material in order to boost the classification performance. 188

3. Materials and methods 189

3.1. Our new material dataset : UJM-TIV 190

3.1.1. General comments 191

The UJM-TIV material dataset consists of images from 11 distinct classes, namely 192

aluminium foil, brown bread, corduroy, cork, cotton, lettuce leaf, linen, white bread, wood, 193

cracker and wool (see Figure 7). 194

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 7. Images of a sample of : (a) aluminium foil, (b) brown bread, (c) corduroy, (d) cork, (e) cotton,
(f) lettuce leaf, (g) linen, (h) white bread, (i) wood, (j) cracker, and (k) wool category from UJM-TIV
dataset taken under illumination condition 65°and viewing condition 90°.

These images were acquired under controlled viewing and lighting conditions. These 195

11 classes are also included in the KTH-TIPS2 [35] dataset. Due to the diversity of samples 196

in each material category, the visual appearance of UJM-TIV samples is not similar to the 197

one of KTH-TIPS2 samples. Stronger appearance differences appeared at lower viewing 198

angles or lower illumination angles (see Figure 8). 199
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 8. Images of a sample of (a) aluminium foil, (b) brown bread, (c) corduroy, (d) cork, (e) cotton,
(f) lettuce leaf, (g) linen, (h) white bread, (i) wood, (j) cracker, and (k) wool category from UJM-TIV
dataset taken under illumination direction 65° and viewing condition 35°.

In the UJM-TIV dataset the variation in appearance between samples is clearly larger 200

for some categories (eg. wood and wool) than in KTH-TIPS2. Furthermore, among UJM- 201

TIV, wool and cotton have the highest appearance variations, while cork, brown bread, 202

and white bread have the lowest intra-class variations. As illustration, see changes of 203

appearance shown in Figures 1 and in 9. 204

3.1.2. Acquisition settings and image processing 205

For our dataset, a Canon EOS 5D Mark IV digital camera was used to capture the 206

images of the samples with a resolution of 6720 x 4480 pixels. The background surrounding 207

each sample was removed using a post processing step. For each object sample, two object 208

poses were taken into consideration, with a variation of 90° rotation around the surface 209

normal (N in Fig. 11). The example shown in Fig. 10 illustrates how such a change can 210

modify the material appearance for a given material sample. 211

The image acquisition setup used to capture the images under controlled viewing 212

and lighting conditions is illustrated in Figure 11. In this figure S is the material sample, I 213

the illumination source and V the viewpoint direction. Four standard light sources (60W 214

tungsten light bulb) were used, one for each lighting direction {θi, φi} used (frontal, roughly 215

20°, roughly 45°, and roughly 65°). Four viewing directions {θv, φv} (frontal, roughly 60°, 216

roughly 30°, and roughly 10°) were used for each object pose. Therefore, there is a total of 217

16 (4 illumination directions x 4 viewing directions) images per sample position captured 218

for each material sample. For two poses, a total of 32 images were captured for each sample. 219

The acquisition were performed in a dark room without any ambient illumination. 220
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Changes of visual appearance of a wool sample under various lighting geometries and
viewing directions. Images (a) to (d) were acquired under with same lighting direction (90°). Images
(e) to (h) were acquired under with same viewing direction (90°). For images (a) to (d) the lighting
direction is fixed at 90° and viewing directions are 90°, 60°, 35°, and 10°, resp.. For images from (e) to
(h) the viewing direction is fixed at 90° and lighting directions are 90°, 65°, 45°, and 20°, resp.

(a) (b)

Figure 10. Images of a cotton sample from UJM-TIV: (a) when viewing condition is frontal and
lighting condition is at 20°. (b) with same viewing and lighting condition when sample orientation is
perpendicular.

The Patchify [36] library was used to extract 200 x 200 pixel image patches from the 221

samples. Patches with background and too blurry images were removed manually from all 222

extracted patches. The number of patches extracted from each sample varies from sample 223

to sample. The dataset contains around 75 thousand image patches after removing the 224

blurred and patches with out of focus from the all extracted patches. 225

3.1.3. Comparison with previous datasets 226

The viewing directions used in UJM-TIV are different from those used in KTH-TIPS2 227

(frontal, rotated 22.5° left and 22.5° right) and with a larger range. The lighting directions 228

used in UJM-TIV are also different from those used in KTH-TIPS2 (frontal, 45° from the top 229

and 45° from the side, all taken with a desk-lamp with a Tungsten light bulb). 230

All samples captured in the KTH-TIPS2 were acquired under a combination of three 231

viewing directions (frontal, rotated 22.5° left and rotated 22.5° right) and four illumination 232

directions (from the front, from the side at roughly 45° and from the top at roughly 45°, and 233

using ambient lighting), different from the ones used in UJM-TIV. They were also captured 234

at different scales oppositely to UJM-TIV. 235
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Figure 11. Schematic diagram of the image acquisition setup. In our experiments the plane defined
by vectors N and I was set perpendicular to the plane defined by vectors N and V.

As with KTH-TIPS2, in UJM-TIV few images of fine-structured materials appear out 236

of focus at working distances due to perspective effects and roughness of materials, see 237

Figure 12 where all the images shown are captured under viewing direction around 10° 238

and illumination direction 20°. 239

Oppositely to some other setups, such as the ones described in [22] or [37], in this 240

study our aim was not to tailor a lighting system which optimizes the light source positions 241

depending of the various materials to acquired. 242

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Image samples appeared as out of focus for category (a) brown bread, (b) corduroy, (c)
cork, (d) cotton, (e) lettuce leaf, (f) linen, (g) wood, and (h) wool from UJM-TIV dataset.
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3.2. Multi-view learning with Siamese networks 243

Multi-view learning is attracted many researchers today [4] since it allows to extract 244

features from multiple views and to merge them into an accurate global representation. As 245

explained earlier, a one-view-one-net mechanism is more adapted to material classification. In 246

this case, each image (view) is feed to a deep backbone to extract features, then the features 247

of each view are merged and used as input to a classification network that predicts the class 248

of the considered sample. Once again, our contribution, here, is not in the definition of the 249

best architecture for this task but rather to leverage the multi-view learning area to show 250

that it can significantly improve the performance for material classification. 251

Hence, we have selected a simple one-view-one-net architecture with a pre-trained 252

network, leaving for future works any improvements related to the architecture choice. 253

Since each view is feeding a backbone, we propose to share the weights between these 254

backbones in order to minimize the number of learned weights and prevent overfitting. 255

Furthermore, sharing the weights between backbones also helps to improve the general- 256

ization power of the model, since the same backbone has to extract accurate features from 257

different views (different appearances). A single architecture merging the outputs of two 258

identical branches is a Siamese network [38–40]. 259

The architecture of the proposed network is shown in Figure 13. The Siamese network 260

takes a pair of images as input from two different views and feeds it to one backbone. In 261

our case, a pre-trained ResNet50 [41] is used as backbone. Each branch learns the features 262

from each input view. Then the learned features are concatenated together and the result 263

feeds the fully connected layers for classification. It is worth mentioning that all the blocks 264

are differentiable so that this architecture can be trained end-to-end (feature extraction and 265

classification) with a single classification loss. 266

267

Figure 13. The proposed Siamese architecture for multi-view learning.

Before concatenating the features of each view, a global average pooling layer is used 268

in order to reduce the number of parameters to learn in the first fully-connected (FC) layer 269

of the architecture. This block also helps to prevent overfitting problems. Furthermore, in 270

order to regularize the classifier, dropout is applied in the FC layers. 271

The advantage of such an architecture is that it can be easily adapted to more views 272

than two. Indeed, the pre-trained backbone can be used to extract features from any new 273

views and only the FC layer has to be adapted and retrained to perform classification. In 274

this paper, we have just trained and tested a two-branch architecture. 275

4. Results and discussion 276

In order to assess the quality of our new dataset and the performance of the propose 277

multi-view CNN, we have conducted many tests on two datasets. The idea was to compare 278

the advantages of our dataset over the KTH-TIPS2 dataset and to compare the performance 279

of our two-views CNN with a single view alternative. 280
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4.1. Experimental settings 281

We have created two architectures for our tests. One classical single-branch architec- 282

ture with a convolutional backbone to extract features and FC layers for classification. The 283

accuracy provided by this network is called Single-view accuracy. Then, we have used our 284

Siamese architecture with two backbones with shared weights that extract features from 285

two views and FC layers for classification. This architecture provides the so called Multi- 286

view accuracy. As backbone for these architectures we have selected a residual network 287

ResNet50 [41] pretrained on ImageNet dataset. The last convolutional layer of this network 288

is fine-tuned on the considered data, while the other layers are frozen. For each architecture, 289

the number of FC layers and the number of neurons in each layer are cross-validated for 290

fair comparison. Finally, the number of learned parameters is equivalent between each 291

architecture (7.1 millions for the single-view and 7.7 millions for the multi-view). 292

Likewise, the hyperparameters and optimization algorithms are the same for both 293

networks. We use Adam optimizer with initial learning rate of 0.001. For each experiment, 294

the learning rate automatically decreases with a factor of 0.2 when the loss meets a plateau. 295

The maximum number of epochs is fixed to 350. Input images were resized to 224 x 224 296

before feeding the network with a batch size of 16. 297

Keras framework with TensorFlow 2.8.0 backend and Python version 3.9.5 was used 298

to implement the both single branch and Siamese network. The models were trained on a 299

high-performance GPU with an NVIDIA RTX 8000 8GB graphics card, CUDA version 11.2, 300

and RAM of size 16 GB. 301

4.2. Data 302

We run experimental tests with two different configurations. The first configuration 303

consists in training and testing on the whole considered dataset. Each dataset is randomly 304

splitted in training and test sets with respectively 70% and 30% of the data, providing the 305

sets called KTH-TIPS2 Train, KTH-TIPS2 Test, UJM-TIV Train and UJM-TIV Test. 306

Then, in order to test the multi-view learning, we select some views in both datasets: 307

6 views in KTH-TIPS2 and 4 views in UJM-TIV. All the images of each selected view are 308

also randomly split with ratio 70% and 30% for training and testing, respectively. 309

Table 1 details the viewing and illumination conditions of the selected views from the 310

KTH-TIPS2 dataset. As observed in Fig. 5, changes of viewing and illumination directions 311

have an impact on the overall appearance of the observed cotton sample (more blur, less 312

contrast, etc.), but these changes are not significant (lower than changes of appearance 313

between samples belonging to the same category, i.e. changes induced by intra-class 314

variation). 315

Table 1. Viewing and illumination conditions of selected views from KTH-TIPS2 [35] dataset

View Viewing direction Illumination direction

View1 Frontal Frontal
View2 22.5° left Ambient
View3 Frontal 45° from top
View4 22.5° right Ambient
View5 Frontal 45° from side
View6 22.5° right Ambient

Table 2 details the viewing and illumination conditions of the selected views from 316

the UJM-TIV dataset used for the experiment. Similarly, Fig. 4 shows the images of 317

four different views of a white bread sample from our new dataset used in multi-view 318

experiment. 319
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Table 2. Viewing and illumination condition for selected views from UJM-TIV dataset showed in
Figure 6

View Viewing direction Illumination direction

View1 90° 90°
View2 90° 45°
View3 90° 20°
View4 60° 65°

4.3. Results 320

The results are organized in two sections, depending on which data the networks have 321

been trained and tested. First, we show results for test on the whole datasets and then, 322

results on selected views. 323

4.3.1. Appearance diversity of the datasets 324

First, the idea is to analyze the results of a single-branch network on the whole datasets. 325

The results are provided in Table 3 for both datasets. First, we can notice that the obtained 326

accuracy for KTH-TIPS2 (80%) is similar to the ones obtained by classical deep networks 327

in [42]. Second, we notice that the accuracy obtained on our UJM-TIV dataset with the same 328

settings as the ones used on KTH-TIPS2 is much lower. This means that a single branch 329

network performs better on KTH-TIPS2 than on our dataset. We think that it is directly 330

related to the higher intra-class variability of our dataset. 331

Table 3. Model accuracy of single branch network with KTH-TIPS2 and UJM-TIV when considering
all the views.

Train data Test data Val. accuracy

KTH-TIPS2 Train KTH-TIPS2 Test 80.00
UJM-TIV Train UJM-TIV Test 55.26

4.3.2. Multi-view learning 332

In this section, we provide results on both datasets when the networks are trained and 333

tested on selected views. We consider the views by pairs in order to test our two-views 334

deep architecture. Thus, we have trained a network (single- or two- views) with the images 335

of the two considered views (training set) and tested on the same views (test set). 336

The results are provided in Table 4 for the KTH-TIPS2 dataset and in Table 5 for our 337

UJM-TIV dataset. First, we can notice that considering only two views for training overall 338

reduce the accuracy compared when training on the whole dataset (which was 80% for 339

KTH-TIPS2 and 55% for UJM-TIV). This is not surprising since here, the network has been 340

trained on less data than when the whole dataset was used. Second, we observe that the 341

multi-view network significantly outperforms the single-view network for all selected 342

view pairs. This clearly shows that multi-view learning is a relevant solution for material 343

classification. And we can notice that the improvement provided by the multi-view training 344

over the single-view is much higher when the two views present very different appearance. 345

This is the case for the dataset KTH-TIPS2 between view5 and view6 (from 56% to 71%) 346

where view6 has a very different lighting conditions than view5. For our dataset, the 347

improvement from single-view to two-views is important for all the considered pairs of 348

views. This is due to the high variation in appearance between the views for our dataset. 349
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Table 4. Model accuracy of single-view and multi-view learning on KTH-TIPS2.

Train data Test data Single-view accuracy Multi-view accuracy

KTH-TIPS2
view1,view2 Train

KTH-TIPS2 view1,
view2 Test 56.90 68.53

KTH-TIPS2
view3,view4 Train

KTH-TIPS2 view3,
view4 Test 60.34 67.24

KTH-TIPS2
view5,view6 Train

KTH-TIPS2 view5,
view6 Test 56.91 71.98

Table 5. Model accuracy of single-view and multi-view learning on our UJM-TIV dataset.

Train data Test data Single-view accuracy Multi-view accuracy

UJM-TIV
view1,view2 Train

UJM-TIV view1,
view2 Test 50.28 79.52

UJM-TIV
view3,view4 Train

UJM-TIV view3,
view4 Test 60.00 75.29

These results clearly show that our dataset is well designed to train networks for 350

material classification and that the proposed Siamese architecture is a relevant solution for 351

two-views learning. 352

5. Conclusion 353

In this paper, we have proposed several contributions for material classification. We 354

have introduced a new dataset with large intra-class variability. The appearance variations 355

within each class are due to large range of acquisition conditions and selection of diverse 356

material samples. We have shown that classical deep networks cannot generalize easily 357

on such data, demonstrating the need of alternative solutions for this task. In order to 358

exploit the appearance variations across viewing conditions, we have proposed to leverage 359

the strengths of recent solutions in multi-view learning. We have shown that a Siamese 360

architecture significantly outperforms the single-branch alternative by merging features 361

from two views. Obviously, increasing the number of views at the input of the network 362

is a solution that will be investigated in our future works. The challenge here, will be to 363

extract features from uncontrolled views and to merge them into a general representation 364

of the considered sample. Next, we plan to demonstrate that multi-view learning could 365

also contribute to better reconstruct (photometrically) complex spatially varying BRDF and 366

to improve the efficiency of single image SVBRDF-based rendering methods (see [43]). 367
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