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In this work, we propose a CNN-based approach to estimate the spectral reflectance of a surface and the
spectral power distribution of the light from a single RGB image of a V-shaped surface. Interreflections
happening in a concave surface lead to gradients of RGB values over its area. These gradients carry a
lot of information concerning the physical properties of the surface and the illuminant. Our network
is trained with only simulated data constructed using a physics-based interreflection model. Coupling
interreflection effects with deep learning helps to retrieve the spectral reflectance under an unknown
light and to estimate the spectral power distribution of this light as well. In addition, it is more robust to
the presence of image noise than the classical approaches. Our results show that the proposed approach
outperforms the state of the art learning-based approaches on simulated data. In addition, it gives better
results on real data compared to other interreflection-based approaches. © 2018 Optical Society of America
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1. INTRODUCTION

When one observes an isolated flat paper under perfect diffuse
light, no color variation appears and each elementary surface
provides the same information about the light and the surface
reflectance of the paper. Most of the time, this information
is not rich enough to deduce anything about the light or the
surface. For example, a paper appearing blue can be a blue
paper under white light or a white paper under blue light. If
one decides to fold the paper, the beams coming from the light
source will bounce between the elementary surfaces thereby
creating color variations across the paper (see Fig.1 and 4). This
phenomenon is called interreflections and is well modeled by
physics-based equations [1–3]. These models clearly explain that
two elementary surfaces appear with different colors because
they received different spectral lights. So creating interreflections
in a scene can be compared to observing the surface under a wide
range of different lights. Thus each elementary surface provides
different and complementary information about the original
light and the surface reflectance. This is why interreflections can
be considered as extra information to extract physical properties
of the observed scene.

The problem of interreflection estimation has typically been
addressed with physics-based approaches [1–4]. These methods
are based on image formation models which consider intrin-
sic properties such as material reflectances, camera sensitivity,
illuminant colors, and scene geometry. However, finding the

Fig. 1. Examples of interreflections. Note how the colors are
changing when moving towards the fold.

inverse function of these image formation models is known to
be very difficult. It is only after imposing additional assump-
tions that these problems can be solved. These assumptions
include Lambertian surfaces, a single known illuminant in a
scene, a known geometry, etc. They also include more techni-
cal assumptions regarding the absence of noise; the reason for
which these algorithms are often evaluated on high quality labo-
ratory images or even only on synthetic data. The advantage of
these methods is that when the assumptions hold they obtain
exact solutions. However, in more realistic situations - as our
experiments will show – the assumptions do not hold; and for
example the presence of noise, a change in geometry, and non
spatially homogeneous light can greatly influence the quality of
the estimation of the scene intrinsic parameters.

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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In recent years, deep learning algorithms have shown an
impressive ability to learn non-linear functions for problems
were abundant data is available. Even though these networks
often consist of millions of parameters they do not tend to overfit
quickly. The advantage of using deep networks for deriving an
inverse function is that we only require the image formation
equations which are typically simpler than their inverse. The
field of computer graphics studies realistic models for image
formation [5–7]. With these equations we can generate training
data consisting of generated scenes and known input intrinsic
parameters. In addition, we can add noise to the process which
more realistically models the world. After generation of the
data we can use deep networks to find the inverse function and
return the intrinsic parameters of the scene given an input image.
In conclusion, using deep networks to find inverse functions of
the image formation model has two advantages: 1. for many
realistic image formation settings there are currently no inverse
functions known, however when the forward image formation
equations are known we can generate the data to train a deep
network, and 2. we can easily consider more realistic scenarios,
e.g. by adding noise in the image formation model, which make
the system robust to situations which might be hard to model
by physics-based methods.

In this paper, we investigate the application of deep net-
work to find the inverse function for interreflections. We first
train a network on simulated data built using an infinite-bounce
physics-based interreflection model [3, 8]. Next, we loosen the
assumption of a known illuminant and leave this task also to the
network. For this case no inverse solution is currently available.
We show that:

1. Even though our datasets are constituted of only physics-
based simulated data, our proposed method significantly
outperforms the physics based methods in the presence of
realistic settings with noise.

2. Deep networks can be applied to inverse problems for
which no solution exists, i.e. estimation of interreflection
with unknown illuminant. In experiments, we obtain bet-
ter results than approaches that require knowledge of the
illuminant spectral distribution.

3. The proposed networks can provide an accurate estimate
of the material reflectance from a single interreflection com-
pared to kernel-based learning approaches. The scene il-
luminant is estimated with good accuracy too. This has
potential applications for color measurements for online
shopping, fruit quality assessment from mobiles, etc.

The paper is organized as follows. In Section 2 we discuss
the related work. In Section 4 we describe the method used to
create the dataset. In Section 5 we describe the deep network
architecture we propose for reflectance and light estimation.
In Section 6 we show the experimental results, and finally in
Section 7 we conclude.

2. RELATED WORK

A. Spectral Reflectance Estimation
State of the art in spectral reflectance estimation of surfaces from
RGB data can be divided into two categories: direct methods as
called in [9, 10], also named observational-model based meth-
ods in [11], and indirect methods as called in [9, 10], also named
learning-based methods in [11]. Spectral responses of sensors

and spectral power distribution (SPD) of illuminants are consid-
ered to be known when direct methods are used. A common
approach of these methods is to combine trichromatic imaging
with multiple light sources [12–18]. Park et al. [12] obtained
spectral information by using RGB camera with a cluster of
light sources with different spectra. They model the spectral
reflectance of surfaces with a set of basis functions in order to
reduce the dimensionality of the spectral space. Later, Jiang et
al. [17] proposed to use commonly available lighting conditions,
such as daylight at different times of a day, camera flash, ambi-
ent, fluorescent and tungsten lights. More recently, Khan et al.
[18] proposed the use of a portable screen-based lighting setup
in order to estimate the spectral reflectance of the considered
surface. The portable screen was used to give three lightings
with green, red and blue colors and the spectral reflectance of the
surface is expressed by nine coordinates in a basis of nine spectra.
These basis functions are obtained by eigendecomposition of
spectral reflectances of 1257 Munsell color chips discarding the
wavelengths corresponding to the sensor-illuminant null-space.

On the other hand, learning-based approaches do not require
prior knowledge of the spectral response of the sensors or the
SPD of the lighting system. In addition, they can be used with a
single light source [11, 13, 19, 20]. In [11], screen-based lighting
is used to reconstruct spectral reflectances from multiple images.
In this last paper, the used approaches are the ones introduced
in [20], which are mostly based on the non-linear ridge regres-
sion and whose differences are in the choice of the used kernel
(e.g. polynomial or Matérn) or of the link function (e.g. logit
or Gaussian copula). The link functions are applied as a pre-
processing step to the input reflectance vectors before learning
and their inverse counterpart are applied to the output vectors
to recover the reconstructed reflectance. Their main aim is to
constrain the reconstructed spectra to be in the range [0,1] due
to physical reasons.However, these last approaches depend on
the quality of the training set and on the choice of the regression
method. It has been shown in [11], that when no high quality
training set is available, using multiple light sources becomes
important in order to improve the quality of the results.

Recently, some works aimed at recovering the spectral curves
of all the pixels of a single RGB image [21–24]. The idea of [22]
is to model the mapping between camera RGB values and scene
reflectance spectra with a radial basic function network. Arad
et al. [21] exploit the prior on the distribution of hyperspectral
signatures in natural images in order to construct a sparse hy-
perspectral dictionnary. The projection of this dictionary into
RGB provides a mapping between RGB atoms and hyperspectral
atoms. Thus, given RGB values that can be decomposed into
RGB atoms, their spectral reflectance is obtained by using the
same combination of the corresponding hyperspectral atoms.
The accuracy and efficiency of this approach was improved by
Aeschbacher et al. [23] who proposed to learn the dictionary
projection between the training RGB and hyperspectral data
and to extract anchor points from this projection. At test time,
a simple nearest anchor search is run for each RGB triplet in
order to reconstruct its spectral curve. Finaly, Alvarez et al. pro-
posed a convolutional neural network architecture that learns
an end-to-end mapping between pairs of input RGB images and
their hyperspectral counterparts [24]. They adopt an adversarial
framework-based generative model that takes into account the
spatial contextual information present in RGB images for the
spectral reconstruction process. For these last works, even if
the aim is also to reconstruct spectral functions from RGB data,
the objective appears to be different from the task addressed in
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this paper. Recovering a full resolution hyperspectral image is
much more challenging and can not provide results as accurate
as the ones provided by approaches that concentrate on a single
surface observed under calibrated conditions. For example, the
best results in terms of root mean square error (RMSE) reported
in [23] are more than 1.00, while the RMSE provided by [8] on
real images is around 0.05.

B. Interreflections

Interreflections refer to the phenomenon that each point in a
concave surface reflects light towards each other point, and thus
re-illuminates it to a more or less extent according to its reflective
properties and the geometrical shape of the surface. The simplest
case is a flat diffusing surface bent into two flat panels with an
angle between them.

This phenomenon has been studied in the domain of com-
puter vision, mainly in order to remove this effect from the
images to be able to retrieve the shape of an object in an im-
age (shape-from-shading methods) [1, 2, 4, 25–27]. Recently,
interreflections have been exploited in the context of color cam-
era calibration [28]. Some approaches in the literature [29–31]
used interreflections as extra source of information in order to
obtain the surface spectral reflectance and the light SPD. Only
adjacent panels having different spectral reflectances are used
while taking into consideration one bounce of interreflected light.
Recently, Deeb et al. [8] exploited infinite bounces of interreflec-
tions in order to help the estimation of the spectral reflectance of
surfaces. Given the light SPD and the camera spectral responses,
they formulate this estimation as an optimization problem. We
use their physics-based interreflection model to create the train-
ing dataset but instead of solving the inverse problem explicitly,
we apply deep learning to learn the inverse function.

C. Deep Learning for Physics Based Vision

Deep learning approaches have also been applied to physics
based vision, where most of the works try to solve the color
constancy problem. For example, since the choice of the pooling
between local and global estimates is not an easy task, Fourure
et al. [32] proposed a deep network that can choose between the
different poolings. The output of this network was a global light
color estimate. Shi et al. [33] rather proposed two interacting
sub-networks that locally estimate the light color. Their idea
is to create multiple hypotheses for each patch with the first
sub-network and then use the second one to vote for the best
hypotheses. Recently, Hu et al. [34] proposed a fully convolu-
tional network to create a confidence map that selects (weights)
the patches in the image which provide the best light color es-
timate. On the other hand, deep networks were also applied
to intrinsic images decomposition. For example, Narihira et
al. [35] proposed to use a convolutional neural network to pre-
dict lightness difference between pixels learned from human
judgment on real images. Shi et al. [36] extended this approach
to non-Lambertian objects and proposed a CNN that is able to
recover diffuse albedo, shading, and specular highlights from a
single image of an object. Recently, Janner et al. [37] proposed
the Rendered Intrinsic Network that contains two convolutional
encoder-decoders: one to decompose the input image into re-
flectance, shape and lighting and another that is reconstructing
the input for these resulted images. The advantage of this net-
work is that it can learn from unlabeled data because it is using
the unsupervised reconstruction error as a loss function.

3. MOTIVATION

Our work is based on the hypothesis that from interreflections
only a neural network can learn to estimate both the spectral
reflectance of the surface and the spectral power distribution of
the light. In order to demonstrate the motivation behind this
hypothesis, let us study how interreflections happen and what
kin of information they hold. When a point on a concave surface
receives a light ray from the light source, this ray might bounce
several times before being able to exit the surface. The total
energy carried with a light ray when it arrived to the camera
sensor is the sum of the energies it carried with each bounce it
encounters. In fact, with each bounce the energy carried with
the light ray decreases. The sooner this energy vanishes the less
bounces the light ray carrying it encounters.

It has been demonstrated in [1, 3, 8] that the total irradiance
at a given point of a concave surface is the sum of the irradiance
directly received from the light source and the indirect irradiance
coming from multiple reflections of the source on the other
points constituting the surface. For a given wavelength, the
irradiance received by a point P1 of a Lambertian surface S after
a single bounce of the light source on the other points Pi ∈ S
with infinitesimal area dPi and characterized by the reflectance
ri, is defined as:

E1(P1) =
∫

Pi∈S
ri

E0
π

K(Pi, P1)dPi, (1)

where E0 is the irradiance received form direct light source and
K(Pi, Pj) is the geometrical kernel K defined for every pair of
points, Pi and Pj as:

K(Pi, Pj) =
(~Ni · ~PiPj)(~Nj · ~PjPi)V(Pi, Pj)

(∆ij)4 . (2)

The vectors ~Ni and ~Nj are the surface normals at Pi and Pj, ∆ij is
the Euclidean distance between the two points, and V(Pi, Pj) is
a visibility term which takes 1 if the areas around these points
can see each other and 0 otherwise.

Similarly, after two bounces of light ray the irradiance can be
written as:

E2(Pi) =
∫

Pj∈S

∫
Pj′∈S

rjrj′
E0

π2 K(Pi, Pj)K(Pj, Pj′ )dPjdPj′ , (3)

One can observe from these equations that oppositely to high-
lights, the spectral radiation of a light ray is changed with each
bounce depending on the spectral reflectance of the point it hits.
Thus, each bounce can be considered as a new light source with
different spectral properties. In addition, the number of bounces
exchanged between a pair of points, Pi and Pj is related to their
relative geometrical relation defined by the term K(Pi, Pj). Close
face to face points have big geometrical kernel values, thus they
would exchange a high number of rays, while far points will
exchange much less, having a small value in the corresponding
geometrical kernel. However, even for two close points with a
high kernel value, the energy carried with a light ray reflecting
from Pj toward Pi will be low at a given wavelength if rj is low at
this wavelength. The number of bounces and the energy carried
with each bounce are the cause of the color gradients over the
concave surface.

Let us take into consideration a special case of interreflection:
self-interreflections happening over a Lambertian surface which
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(a) Flat brown surface under a white light. (b) Flat white surface under a brown light.

(c) Folded brown surface under a white light. (d) Folded white surface under a brown light.

Fig. 2. Interreflections and metamerism: two Metameric flat surfaces show no metamerism when folded with an angle of 45◦. The
graphics are computed with the spectral infinite-bounce interreflection model explained in Section 4.

is the case we are studying in this paper. In this case, the sur-
face has the same spectral reflectance, r all over its area. Then,
previous equations can be written as:

E1(P1) =
∫

Pi∈S
r

E0
π

K(Pi, P1)dPi, (4)

E2(Pi) =
∫

Pj∈S

∫
Pj′∈S

r2 E0

π2 K(Pi, Pj)K(Pj, Pj′ )dPjdPj′ , (5)

From these equations, one can observe that the RGB values
of an area with interreflections have different relations with the
surface spectral reflectance and the light SPD. With each bounce
the reflectance is risen to a higher power, whereas the relation
with light SPD is kept linear.

One of the advantages of the asymmetry between the sur-
face reflectance and light SPD is that it allows us to distinguish
materials which might appear as metamers in the absence of in-
terreflections. As an example consider Figure 2 where we show

an example of metamerism: a flat brown surface with a white il-
luminant is indistinguishable from a white surface with a brown
illuminant. However, when we fold the surface and consider
inter-reflections the observed surfaces do significantly differ.
We therefore argue that two surfaces which show metamerism
when they are flat, have almost no chance to show the same color
gradients when they are folded into a concave shape. For this
reason, interreflections can be seen as an important sources of
information to get both surface reflectance and light SPD while
avoiding the case of metamerism. In this paper, we investigate
the usage of deep networks to extract intrinsic scene information
from interreflections.

4. DATASETS

Simulated datasets built using an infinite-bounce interreflection
model for Lambertian surfaces are considered. In this section,
we first present the used model, then the proposed datasets and
the data augmentation performed on them. The used model
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in the one proposed by Deeb et al. [8]. In this work, we adopt
this model to build simulated datasets to be used to train the
network.

A. The interreflection Model
Starting from Equations (1) and (3), a discrete version of the
model was proposed by Nayar et al. [1], and can be obtained
by sampling the surface into a finite number m of small facets,
where each facet is assumed uniformly illuminated, flat and
uniform in reflectance. The area of a facet centered on a point Pi
is denoted Si and Kij is the geometrical kernel between Pi and
Pj. The irradiance in a facet centered on P1, after one bounce can
be re-written as:

E1(P1) =
m

∑
i=1

ri
E0
π

Ki1Si, (6)

Similarly, if the light rays reflect twice on every pair of points
Pi and Pj with respective reflectances ri and rj, the irradiance
received by a point P1 is:

E2(P1) =
m

∑
j=1

m

∑
i=1

rjri
E0

π2 KijKj1SjSi. (7)

These equations can be written in a matrix form:

E1 = KRE0, (8)

and
E2 = (KR)2E0, (9)

where K is a square matrix, symmetric when all the facets are of
equal size, with zeros on the diagonal due to the fact that rays
cannot transit to a facet from themselves:

K =
1
π


0 K12S2 . . K1mSm

K21S1 0 . . K2mSm

. . 0 . .

Km1S1 . . . 0

 , (10)

R is a diagonal matrix grouping all spectral reflectances of the
different facets for the considered wavelength:

R =


r1 0 ...... 0

0 r2 .... 0

. . . ....

0 0 .. rm

 , (11)

and E0 is a vector of dimension m representing the direct irradi-
ance received by the m facets.

Based on this matrix form, the cumulated irradiance values
on each facet after n bounces of light, grouped into an irradiance
vector of size m, can be written as:

E0→n =
n

∑
b=0

Eb =
n

∑
b=0

(KR)bE0. (12)

This sum corresponds to a geometric series. In case of non flu-
orescent surfaces, when n tends to infinity, this series converge
to:

E = (I−KR)−1E0. (13)

This is a general expression of irradiance for a single wave-
length after infinite bounces of light for Lambertian surfaces. A
more handy form can be obtained from this equation by writ-
ing the radiance reflected towards the camera in terms of direct
irradiance (L = 1

π RE):

L =
1
π
(R−1 −K)−1E0. (14)

Since we are working with RGB values captured by camera
sensors, we need to integrate this radiance value over the wave-
length range of the sensor sensitivities. So we need to use an
extended version of this equation (defined for a single wave-
length), in order to take into consideration all pixels and all
wavelengths simultaneously. This version has been proposed
in [3] as follow:

Lext =
1
π
(Rext

−1 −Kext)
−1E0ext , (15)

where E0ext is a vector of length mq which is obtained by con-
catenating the wavelength-specific E0 vectors. R is extended
to another square diagonal matrix Rext of size mq×mq, where
q is the number of wavelengths. Renaming R defined for the
wavelength λi as Rλi , Rext is expressed as:

Rext =


Rλ1 0 ...... 0

. Rλ2 ..... .

. .... . 0

0 . ...... Rλq

 . (16)

Likewise, K is extended to the square matrix Kext of size
mq×mq:

Kext =


K 0 ...... . . . . 0

. K . .... . . . .

. . . .... . . . .

0 0 .. . . . ...... K

 . (17)

Let consider s sensors (s = 3 for classical RGB cameras)
whose spectral sensitivities are inserted in the ms×mq matrix
Cext as follow:

Cext =


C1

λ1 C1
λ2 ...... . . . . C1

λq

C2
λ1 C2

λ2 ...... . . . . C2
λq

. . . . . . . .

Cs
λ1 Cs

λ2 ...... . . . . Cs
λq

 . (18)

where the m×m matrix Ci
λ is associated to the sensor i:

Ci
λ = ci

λ Im, (19)

where Im is the m-dimensional identity matrix.
Thus, the camera sensor responses can be obtained as a ms-

dimensional vector:

ρext =
[
ρ1

1 .. ρ1
m ρ2

1 .. ρ2
m ... ρs

1 .. ρs
m

]T
, (20)

thanks to the equation:

ρext =
1
π

Cext(R−1
ext −Kext)

−1E0ext. (21)



Research Article Journal of the Optical Society of America A 6

Since we consider in this paper only self-interreflections, we
assume that all the facets of a considered surface have the same
reflectance. Consequently, we can exploit the eigendecompo-
sition of Kext proposed by Deeb et al. in [8] in order to speed
up the evaluation of the camera sensor responses from equa-
tion (21).

B. Self-Interreflection Dataset Construction

To train our network, we created datasets of simulated images
of size 10× 10 corresponding to one side of a folded V-shaped
surface for each of the 1269 Munsell patches. A dataset is built
for a specific camera with known spectral response functions
and a specific angle. Datasets are built taking into consideration
multiple light sources. However, they can be built using a single
light source also.

Each image in the dataset corresponds to a V-shaped configu-
ration of a surface with a homogeneous spectral reflectance. In
order to do this, geometrical kernel values are obtained using
Monte Carlo integration after choosing the angle, the sizes of
the planar surfaces, and the discretization size as suggested in
[3]. We consider a single collimated light source, parallel to the
bisecting plane of the two panels, illuminating the V-cavities
frontally. As a consequence the irradiance received at each facet
of the V-cavities from direct light is considered constant:

∀i, j : E0(Pi) = E0(Pj). (22)

For a surface with a known spectral reflectance, and after
choosing the camera spectral response functions and the spectral
power distribution of illuminant, RGB values can be obtained
using the previously explained interreflection model.

The images are then pre-processed by applying mean sub-
traction and normalization. Data augmentation is performed at
batch level by adding different levels of noise to each image. We
adopt two types of noise to be added to images at batch level:
Poisson noise is added to each image, and a Gaussian noise of
one of 5 different variances might be added to some images
based on a random decision.

5. NETWORK STRUCTURE & LOSS FUNCTIONS

For our regression problem, we use the convolutional neural
network structure presented in Figure 3, in order to obtain both
the spectral reflectance of the surface and the spectral power
distribution of the lighting from raw image RGB values. The
network architecture starts with a shared part which consists of
three convolutional layers; the first and second convolutional
layers are of size 5× 5 with padding of 2. The size of the input
starts to get smaller with the pooling layer of size 2× 2 and then
with the latest convolutional layer of size 3× 3 and a stride of
3. Subsequently, the network is split into two branches; one for
the estimation of the surface reflectance and one for the spectral
power distribution. These specialized branches consist of two
fully connected layers each.

Let us denote by Rλ, R̂λ, the ground truth spectral reflectance
vector and the estimated one, respectively, and by E0λ, Ê0λ, the
ground truth SPD and the estimated one respectively. Each of
these vectors contains the values of all the considered wave-
lengths. For this reason we put the subscript λ to distinguish
these vectors from the ones introduced previously.

Three loss functions are used to obtain accurate spectral re-
flectance and SPD. The first loss function, LR(Rλ) is regarding

the error on the spectral reflectance defined as:

ŁR(Rλ) =
1
2
(Rλ − R̂λ)

2. (23)

The second loss function is related to the error in the SPD of
illuminant and is defined as:

ŁE(E0λ) =
1
2
(E0λ − Ê0λ)

2. (24)

In principle the network can be trained with only the LR and
LE loss. However, in addition we introduce a consistency loss.
We would like the multiplication of the estimated reflectance
and illuminant to be close to the real color signal Sλ = Rλ �
E0λ, where � is the component-size multiplication operator so
that Sλ is also a spectral signal. This loss enforces consistency
between the separately estimated surface reflectance and light
SPD. We use the CIE 1931 XYZ color matching functions to
obtain an estimation which minimizes a perceptually relevant
error because it gives more importance to wavelengths with
high visual response [20]. This consistency loss is defined as:

ŁS(Sλ) =
1
2
(X̄� Rλ � E0λ − X̄� R̂λ � Ê0λ)

2

+
1
2
(Ȳ� Rλ � E0λ − Ȳ� R̂λ � Ê0λ)

2

+
1
2
(Z̄� Rλ � E0λ − Z̄� R̂λ � Ê0λ)

2, (25)

where X̄, Ȳ and Z̄ are the CIE 1931 XYZ color matching functions.
The network is initialized using Xavier [38]. The learning rate

is set to 10−4 and is reduced every 20 epochs by a factor 10. The
momentum is set to 0.9 and the batch size to 50.

The choice of network structure was done experimentally.
The idea was to use a simple network that works well for our
regression problem. We found that batch normalization cannot
be used in these sort of regression problems where the exact
intensity of the output signal is crucial for the quality of the
estimation. Moreover, as the output spectral values for both
surface and light are in the range [0, 1], one may think to add a
sigmoid layer to accelerate the convergence. However, putting
a sigmoid layer played the opposite role in our case leading to
a non convergence of the network. This is probably due to the
fact that our network is relatively shallow, so a sigmoid is being
an obstacle in the learning process.

In order to verify the importance of the third loss function,
LS, we performed an ablation study. We trained the network
twice under the same settings and on the exact same dataset,
the only difference is that we deactivated the consistency loss
LS for one training and activated it for the other. Table 1 shows
the percentage of enhancement in RMSE, PD and DE00 errors
when the consistency loss is activated compared to when it is
deactivated.

Table 1. Error enhancement when using the consistency loss

RMSE PD DE00

Error enhancement (%) 7.7 11.6 14,8
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Concat.
LS

Input
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& ReLU
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& ReLU
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& ReLU
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Fig. 3. Diagram of the proposed network for surface reflectance and illuminant estimation from interreflections.

6. EXPERIMENTS & RESULTS

In this section, our results on both simulated images and real
camera outputs are presented. We consider a V-shaped config-
uration consisting of two planar square surfaces with an angle
of 45◦ between them (see Figure (4)). The dataset and the test
images contain only the area of one side of the planar surface
discretized into 10× 10 facets.

Different metrics are used in order to evaluate our approach
and to compare our results with those obtained using other spec-
tral reflectance estimation approaches. The root mean square
error (RMSE), and the Pearson distance (PD) are used to show
the accuracy of spectral estimation. The performance is also
evaluated in terms of color distance. We use CIEDE00 distance
[39] with CIE D65 lighting and a 2◦ viewing angle. This dis-
tance is computed between the color signal obtained with the
ground truth spectral reflectance and the one obtained with the
estimated spectral reflectance.

A. Simulated Data
For simulated data tests, the datasets are built using the CIE
1931 XYZ color matching functions as sensor spectral responses.
This is done in order to compare our results to the ones in [20]
under the exact same configurations. Wavelengths are taken
between 400nm a 700nm with a 5nm step, giving a total of 61
wavelengths. Two datasets are considered for this case, the first
is built using only the CIE D65 SPD. The network structure in
this case is adapted so that the layers corresponding to the SPD
of light are deactivated leading to only two loss functions LR

and LS. In addition, both E0 and Ê0 are replaced by the SPD of
CIE D65 in the calculation of LS. Following the same process
as in [20], the network is trained using 90% of Munsell patches
and tested on the remaining 10%. The second dataset is built
using 23 different SPDs corresponding to illuminants on the
Planckian locus with color temperatures ranging from 4000K
to 15000K with steps of 500K between them. In this case, the
network whose structure is shown in Figure (3) is also trained
using 90% of Munsell patches under various illuminants and
tested on the remaining 10%.

Our results on both datasets are shown in Table 2. They are
compared to the best results regarding the average error in [20]
obtained using a logit link function with different kernel models.
The results are shown in terms of average, max and 95th per-
centile RMSE and PD values. It can be observed from the results
that when training the network with the dataset built using a
single illuminant, which represents the setting of reflectance
estimation with known illuminant, our approach outperforms
the state of the art approaches. In addition, when training using

the dataset built with different lightings, which is equal to the
setting of unknown scene illuminant, our results are still better
than the state of the art ones except for the maximum error val-
ues. However, in this case, the SPD of light is learned also with
an average RMSE of 0.0154. The average DE00 values are 0.6379
and 0.7279 for the single illuminant dataset and the multiple
illuminant dataset respectively. It is worth mentioning that, in
this case, our algorithm is able to reconstruct the unknown light
SPD while for the other tested methods in Table 2, this SPD is a
known input.

B. Real Data

For real data tests, a new simulated dataset is built using Munsell
spectral reflectances, the Canon EOS 1000D spectral response
functions and the 23 planckian illuminants. The network is
trained with this dataset except the green and red patches in
order to make sure that no overfitting is happening. The same
camera is then used to take photos of V-shaped surfaces with an
approximative angle of 45◦ of six colored surfaces: a red Munsell
paper, and five other textile pieces of different colors. The photos
are taken under direct sunlight in the early afternoon. The area
of the photo corresponding to one side of the V-shaped surface is
selected manually to be then automatically discretized into 10×
10 facets each represented by the mean RGB values over its area.
In Table 3 our results are compared to the state of the art ones
on real images under a known illuminant [3, 12, 18]. The results
show that our approach outperforms the sate of the art ones in
terms of spectral error even when a pre-calibration step using the
XRite ColorChecker is performed to help these approaches. This
pre-calibration is detailed in [8] and is mandatory for the classical
approaches [12, 18] in order to get accurate reconstructions when
used in non-calibrated configuration. It requires to add a color
checker in the image, which is a strong constraint. Moreover,
when compared to physics-based interreflection approach [8], a
significant enhancement in the spectral estimation is obtained
when no pre-calibration step is used. The SPD of light is not
known in our approach and is guessed with an average RMSE
of 0.1 in comparison to CIE D50 spectral power distribution.

Figure (4) shows the estimated surface spectral reflectance
compared to the ground truth one using a single photo taken
under daylight for Munsell red paper, and cyan textile piece.
The estimated illuminant SPD is also shown next to the one of
CIE D50 which was chosen in [8] as a representative of direct
sunlight.
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Fig. 4. Examples of estimated surface spectral reflectance and light SPD using our approach.
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Table 2. Spectral error values for simulated data

Method RMSE Avg. RMSE Max. RMSE 95th PD Avg. PD max. PD 95th

Gaussian kernel 0.0103 0.0508 0.0333 0.00104 0.0154 0.00462

Matérn kernel 0.0092 0.0558 0.0326 0.00088 0.0083 0.00420

TPS kernel 0.0092 0.0556 0.0332 0.00088 0.0083 0.00411

Ours (1 light) 0.0087 0.0460 0.0191 0.00081 0.0068 0.0041

Ours (23 lights) 0.0088 0.0771 0.0213 0.0012 0.0639 0.0041

Table 3. Results on real data

Method Pre-calibration Illuminant RMSE PD DE00

Park et al. [12] Yes Known 0.060 0.009 3.76

Khan et al. [18] Yes Known 0.059 0.009 3.87

Deeb et al. [3] Yes Known 0.046 0.008 3.82

Deeb et al. [3] No Known 0.061 0.012 5.62

Ours No Unknown 0.045 0.004 4.12

C. Generalization to other angles

One important thing to verify is how well our approach general-
izes to other geometries. One way to check this can be done by
training the network on other V-shaped surfaces with different
angles between the two planar surfaces. Thus, we trained the
network on new datasets built using V-shaped surfaces of all
Munsell patches with angles of 30◦, 60◦, 90◦, 120◦ and 150◦. All
the other settings are exactly the same as those used in our tests
on simulated data. Table 4 shows the RMSE, PD, DE00 errors
regarding the spectral reflectance, as well as the RMSE error
regarding the light SPD when testes on the same angle used
for training. One can see that the approach generalizes well
whenever the angle is small enough to give significant amount
of interreflections. Our results show that both spectra are es-
timated with a very good accuracy for angles reaching 120◦.
For much bigger angles, 150◦ for example, interreflections hap-
pen less leading to less important color gradients which are not
enough for the network to learn the inverse solution.

However, one possible limitation is that till now we propose
to train the network on a specific geometry. Thus, and in order
to provide a more concrete application of our approach, we tried
to train the network on three angles together, 30◦, 60◦ and 90◦.
Table 5 shows the results in terms of RMSE, PD, and DE00 for
spectral reflectance and RMSE of light SPD when the network is
tested on one of the angles included in the training set, and also
on a new angle which the network did not encounter before. As
it can be observed, the approach generalizes very well to training
on different geometries even when it is tested on a new geometry.
Error values obtained when the network is tested on one of the
angles used for training are very close to those obtained when
the network is trained only on that specific angle (see Tables 4
and 5). On the other hand, when the network is tested on a new
angle, most of the error values increase significantly. However,
it is noticeable that while all the other errors increase, it is not

the case for the PD one. This observation leads us to think that
the network is falling in some metamerism traps for some of the
patches. This is probably happening when the network is failing
to recognize if the color gradients are due to high reflectance
with big angle or to lower reflectance with smaller angle. Thus,
the network in this case is getting the shape of the spectrum
correctly but is not able to accurately identify the exact spectral
reflectance. However, training on more angles with smaller steps
between them would be a solution for this problem. In this case,
more detailed association between the color gradients and the
angles would be learned reducing as a consequence the previous
case of error.

7. CONCLUSION

In this paper, a convolutional neural network was trained in
order to solve the inverse problem of surface spectral reflectance
estimation form a single RGB image of interreflection under
unknown lighting. Datasets were built from synthetic images
simulated using infinite-bounce physics-based interreflection
model. Different noise types and levels were added to the images
during the training in order to better cope with noises in camera
outputs. Our experiments on simulated data showed that our
approach even under an unknown illuminant outperforms the
state of the art learning-based spectral reflectance estimation
approaches trained for a specific known lighting. In addition,
real data results showed that our method gets a better accu-
racy of spectral reflectance estimation under unknown lighting
than physics-based approaches under a light with a known SPD.
The improvement of our method over physics-based methods
could be explained by the fact that we incorporate realistic noise
models in the dataset creation, whereas it is very difficult to
propagate the impact of noise through physics-based methods.

However, our approach handles only direct collimated light-
ing. In the future, datasets can be further enhanced by using
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Table 4. Results of training with different angles

Surface reflectance Light SPD

Trained and tested angle RMSE PD DE00 RMSE

30◦ 0.0090 0.0014 0.6976 0.0173

60◦ 0.0090 0.0014 0.6976 0.0173

90◦ 0.0091 0.0014 0.6704 0.0160

120◦ 0.0093 0.0011 0.6775 0.0146

150◦ 0.0260 0.0073 4.1055 0.1050

Table 5. Results of training with different angles

Surface reflectance Light SPD

Trained angle Tested angle RMSE PD DE00 RMSE

30◦ & 60◦ & 90◦ 60◦ 0.0099 0.0013 0.8382 0.0178

30◦ & 60◦ & 90◦ 45◦ 0.0134 0.0014 1.1498 0.0203

more realistic lighting conditions. This can be done for example,
by modeling ambient light, shadowing and different incidence
angles. In addition, the approach can be extended to take into
consideration interreflection between surfaces with different
spectral reflectances and under different geometrical configura-
tion.
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