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Abstract. We prove that the maximal abelian extension tamely ramified at infinity of the rational function

field over Fq is generated by the values at the points in the algebraic closure of Fq of the higher derivatives

of the so-called Anderson and Thakur function ω. We deduce a similar property for the special values of

the higher derivatives of a new kind of L-series introduced by the second author.

1 Results

In virtue of the Kronecker-Weber Theorem, the maximal abelian extension of Q in C can be
generated by the values of the exponential function at the rational multiples of π

√
−1. In [9], Hayes

proves a similar property for the Carlitz exponential expC .
Let Fq be the finite field with q elements and let K be the rational function field over Fq. Let

us choose a generator θ of K and let us denote by C∞ the completion of an algebraic closure of the
local field K∞ = Fq((1/θ)).

The Carlitz exponential expC (Goss, [8, §3.2]) is a surjective, entire, Fq-linear map expC : C∞ →
C∞ of kernel π̃A, where A = Fq[θ] and where the period

π̃ := θ(−θ)
1

q−1

∞∏
i=1

(1− θ1−qi)−1 ∈ (−θ)
1

q−1K∞ (1)

is defined up to the multiplication by an element of F×q = Fq \ {0}.
Let Facq be the algebraic closure of Fq in C∞. Hayes result [9, Theorem 7.1] yields that the

maximal abelian extension E ⊂ C∞ of K tamely ramified at the infinity place is the compositum
in C∞ of Facq , and the subfield of C∞ generated over K by the images of expC at the elements of
π̃K.

The aim of this paper is to exhibit new ways to generate the extension E. Let us denote by
D the disk {z ∈ C∞; |z| ≤ 1}. The special function of Anderson and Thakur ω, introduced in [4,
Proof of Lemma 2.5.4], can be defined for all x ∈ D by the convergent infinite product

ω(x) = (−θ)
1

q−1

∏
i≥0

(
1− x

θqi

)−1

, (2)
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where we choose the same branch of the (q − 1)-th root of −θ as in the product (1).
This function already played a singular arithmetic role in previous literature. For instance, the

function

Ω =
1

(t− θ)ω
,

entire, determines a rigid analytic trivialization of the Carlitz (dual) t-motive (following Anderson,
Brownawell and Papanikolas in [3]).

The higher derivatives Dn(ω) of the function ω (see §2) all determine rigid analytic functions
D → C∞ and we can consider the values Dn(ω)(ζ) ∈ C∞ for all n ≥ 0 and ζ ∈ Facq . It turns out
that these are algebraic elements over K (see Proposition 2.1).

For each monic irreducible polynomial p of A (abridged to prime of A in all the following), we
choose a root ζp ∈ Facq . We shall prove:

Theorem 1.1 The maximal abelian extension E of K tamely ramified at the infinity place is gen-
erated over Fq by the elements Dn(ω)(ζp) for all n ≥ 0 and for every prime p of A.

In [12], the second author introduced a class of L-series which analytically interpolate the
Carlitz zeta values and the special values of Dirichlet-Goss L-series. The simplest of these functions
is defined by the eulerian product

L(x) =
∏
p

(
1− p(x)

p

)−1

.

The above product runs over the primes of A, and for a polynomial a =
∑d
i=0 aiθ

i ∈ A = Fq[θ]
and x ∈ C∞, we have denoted by a(x) the element

∑d
i=0 aix

i ∈ Fq[x]. We have convergence for all
x ∈ D. In [12, Theorem 1], the functional identity

L = −π̃Ω (3)

is proved, hence featuring ω as a “gamma factor”. This allows for the analytic study of trivial zeroes
and special values of L. By (3) and Theorem 1.1 we obtain the following result which appears to
be in the spirit of Stark conjectures (see Tate’s book [14]):

Corollary 1.2 The field E is generated over Fq by the elements π̃−1Dn(L)(ζp) for all n ≥ 0 and
for all prime p.

The paper is organized as follows. In §2 we present the properties of ω that we develop to prove
our results. In particular, we show an analytic formula (Proposition 2.6) and, in Theorem 2.9, we
give an interpretation of ω as a “universal Gauss-Thakur sum”; this is the result which originally
motivated our investigation. Formal analogies between the classical Gauss sums and Euler’s gamma
function also suggested this approach.

In §3, the proofs of Theorems 1.1 and Corollary 1.2 are deduced from an identity of fields at
the level of finite extensions of K (Theorem 3.3). In §3.1 we examine the compatibility of our
constructions with class field theory. We end with a few remarks about our methods. We point out
that, for the time being, our constructions do not seem to have appropriate analogues in the class
field theory for the rational field Q.

Acknowledgements. We warmly thank D. Goss and R. Perkins for fruitful discussions about the
topics of this paper. We are very thankful to R. Perkins for having drawn our attention to a
property similar to that of Corollary 1.2 on the values of L on Facq . We heartily thank the referee
for useful suggestions that helped us write a significantly improved text.
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2 The function of Anderson and Thakur

Let | · | be the absolute value of C∞ normalized by |θ| = q. Let ‖ · ‖ be the Gauss absolute value
over C∞ ⊗Fq A determined by ‖c ⊗ 1‖ = |c| for all c ∈ C∞. We denote by T the completion of
C∞ ⊗Fq

A for this absolute value (we identify C∞ with its image by the C∞-algebra embedding
C∞ → T defined by c 7→ c ⊗ 1). This is the standard one-dimensional Tate algebra over C∞ (see
[7] for an account of the theory of these algebras). If we denote by t the element 1 ⊗ θ ∈ T, then
every element f of T can be represented by a series

f =
∑
k≥0

fkt
k,

with fk ∈ C∞ for all k ≥ 0 and with limk→∞ fk = 0. In particular, for all ζ ∈ C∞ such that |ζ| ≤ 1,
the series

f(ζ) :=
∑
k≥0

fkζ
k

converges in C∞.
Let τ : T→ T be the unique Fq[t]-linear automorphism extending the Fq-automorphism c 7→ cq

of C∞. For all f ∈ T, we have
‖τ(f)‖ = ‖f‖q.

We denote by T[τ ] the skew polynomial ring whose elements are the finite sums a0 +a1τ+ · · ·+anτn
with a0, . . . , an ∈ T, where the sum is the usual one, and where the product is uniquely determined
by the rule

τf = τ(f)τ

for f ∈ T. If α = a0 + · · · + anτ
n ∈ T[τ ] and f ∈ T, the evaluation α(f) of α at f is the element

a0f + · · ·+ anτ
n(f) ∈ T.

For all n ≥ 0, we denote by Dn the continuous C∞-linear endomorphism of T determined by
the relations

Dm(tn) =

(
n

m

)
tn−m

for m ≥ 0, where
(
n
m

)
= n(n−1)···(n−m+1)

m! ∈ Fq. Then, (Dn)n≥0 is an iterative higher derivative in
the sense of Matsumura, [10, §27]. For all n ≥ 0 and for all f ∈ T, Dn(f) ∈ T. We note that for all
n ≥ 0, the operators Dn and τ commute.

2.1 Values of ω at roots of unity

In this subsection we briefly discuss the algebraicity of ω and its higher derivatives at roots of unity.

Proposition 2.1 For all n ≥ 0 and ζ ∈ Facq , Dn(ω)(ζ) is algebraic over K.

Proof. From the definition (2) of ω, we see that

τ(ω) = (t− θ)ω. (4)

Hence, we have that
τd(ω) = bdω (5)
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where bd = (t− θ)(t− θq) · · · (t− θqd−1

).

Let ζ ∈ Facq be of degree d over Fq. Since for all f ∈ T we have f(ζ)q
d

= τd(f)(ζ), we have that

ω(ζ)q
d

= (τd(ω))(ζ) and X = ω(ζ) is a root of the polynomial equation

Xqd−1 = bd(ζ). (6)

In particular, ω(ζ) is algebraic over K (cf. Theorem 2.9). Now, let n > 0 be an integer. Since the
operators Dn and τ commute, we infer from (5) that

τd(Dn(ω)) = bdDn(ω) +

n∑
i=1

Di(bd)Dn−i(ω)

(since (Dn)n≥0 is a higher derivative, it satisfies Leibniz rule). Specializing at t = ζ we obtain that
X = Dn(ω)(ζ) is a root of a polynomial equation:

Xqd = bd(ζ)X + ξn, (7)

where

ξn =

n∑
i=1

Di(gd)(ζ)Dn−i(ω)(ζ), (8)

that is, a linear combination of ω(ζ), D1(ω)(ζ), . . . , Dn−1(ω)(ζ) with coefficients in A[ζ]. By induc-
tion on n, we conclude the proof.

Remark 2.2 From [12, Corollaries 5, 10] one can prove that ζ ∈ C∞ \ {θq
k

; k ≥ 0} and ω(ζ) are
simultaneously algebraic if and only if ζ ∈ Facq .

2.2 The Carlitz module over the Tate algebra

The next definition is borrowed from [6]; it is a particular case of Drinfeld module over Tate algebras
studied there.

Definition 2.3 The Carlitz module over T, denoted by C(T), is the Fq[t]-module T together with
the unique A[t]-module structure for which the action of θ is given by the evaluation of the skew
polynomial θ + τ .

For a ∈ A[t], f ∈ T, we denote by Ca(f) the multiplication of f by a for this module structure.
Here is an example which illustrates this action: if f ∈ T, we have Cθ(f) = θf + τ(f).

Definition 2.4 The Carlitz exponential function over T is the continuous, open, Fq[t]-linear endo-
morphism expC of T such that, for f ∈ T,

expC(f) =
∑
i≥0

τ i(f)

di
,

where d0 = 1 and di = (θq
i − θ)dqi−1.
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Since the restriction of expC to C∞ ⊂ T gives the usual Carlitz exponential function from C∞
to C∞, which is entire and surjective, the function expC : T→ T is itself surjective. Moreover, for
all a ∈ A[t] and f ∈ T, we have the identity

Ca(expC(f)) = expC(af).

Now, expC induces an isometric Fq[t]-linear automorphism of the Fq[t]-module {f ∈ T; ‖f‖ < q
q

q−1 }.
Hence, if an element f belongs to the kernel of expC , it must be a polynomial in t. The knowledge
of the kernel of expC : C∞ → C∞ finally yields (cf. [6, §3.2.1]):

Lemma 2.5 The Carlitz exponential function gives rise to the exact sequence of A[t]-modules:

0→ π̃A[t]→ T→ C(T)→ 0.

It is easy to show that the kernel of the Fq[t]-linear endomorphism Ct−θ = t−Cθ of T is the free

Fq[t]-module of rank one generated by µ = expC

(
π̃
θ−t

)
. In particular, this element of T is solution

of the τ -difference equation (4). Since also ω is a solution of that equation and both ω and µ are
units in T, this implies that ω ∈ F×q µ. Comparing the values of both functions at t = 0, we obtain
that ω = µ, that is (cf. [12, §4]),

ω = expC

(
π̃

θ − t

)
. (9)

But for all n ≥ 0 the operators Dn and τ commute, and we also have

Dn(ω) = expC

(
π̃

(θ − t)n+1

)
. (10)

2.3 An analytic identity

In order to prove Theorem 1.1, we need to slightly generalize the identity (10).
For ζ ∈ Fqd of degree d, we introduce the series:

ωζ = ω(t+ ζ) =
∑
j≥0

cζj t
j ∈ T

where

cζj = Dj(ω)(ζ) =
∑
i≥j

c0i

(
i

j

)
ζi−j

with c0i = expC(π̃/pn+1) ∈ K∞(π̃).

Proposition 2.6 (Analytic identity) Let p be a prime of A of degree d, let ζp be one of its roots
in Fqd . Let P (t) ∈ A[t] be defined by P (t) = p(θ− t). Then, for all n ≥ 0, there exists a polynomial
Bn ∈ A[t] \ PA[t] such that the following identity in T holds:

Dn(ωζp) = −
∑

a∈A(d)

Ca
(
expC

(
π̃Bn

Pn+1

))
a(t+ ζp)

−
d−1∑
j=1

MjDn(ω
ζq

j

p

)−
n−1∑
k=0

d−1∑
j=0

Nn−k,jDk

(
ω
ζq

j

p

)
, (11)
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where A(d) denotes the set of non-zero polynomials of A of degree ≤ d− 1, and where

Mj = −
d−1∏
i=1

t− tqi + ζq
j

p − ζq
i

p

t− tqi + ζp − ζq
i

p

, Ni,j =
∑

a∈A(d)

Di(a(t+ ζq
j

p ))

a(t+ ζp)
.

Proof. Let ζ1, . . . , ζd be the zeros of p, and let us set ζp = ζ1. It is easy to show that there exists a
polynomial Bn ∈ A[t] \ PA[t] such that

Bn
Pn+1

=

d∑
i=1

1

(θ − t− ζi)n+1
.

We now apply the operator expC(π̃·) to both sides (we note that all the terms involved are elements
of T). We get the following identity in T:

expC

(
π̃Bn
Pn+1

)
= expC

(
d∑
i=1

π̃

(θ − t− ζi)n+1

)
.

We claim that if f is an element of T, then

d∑
i=1

expC(f)(t+ ζi) = expC

(
d∑
i=1

f(t+ ζi)

)
.

This comes from the fact that for all k ≥ 0,

d∑
j=1

τk(f)(t+ ζj) = τk

 d∑
j=1

f(t+ ζj)

 .

Applying the claim, we get the identity

d∑
i=1

Dn(ωζi) = expC

(
π̃Bn
Pn+1

)
. (12)

Let ρ ∈ Gal(FqdK∞(π̃)/K∞(π̃)) be the unique element of order d such that ρ(ζ) = ζq for all
ζ ∈ Fqd .

We consider the Fqd -linear endomorphism

τ̃ = ρ−1 ◦ τ : FqdK∞(π̃)→ FqdK∞(π̃), (13)

which satisfies |τ̃(x)| = |x|q for all x ∈ FqdK∞(π̃). Let us consider the FqdK∞(π̃)-algebra Td,∞
whose elements are the series

∑
i cit

i of T such that the coefficients ci belong to FqdK∞(π̃).
We extend τ̃ to an Fqd [t]-linear endomorphism of Td,∞. We endow Td,∞ with the unique

structure of Fqd [θ]-module C̃(Td,∞) determined by C̃θ(x) = θx + τ̃(x) for x ∈ Td,∞ (here, C̃a(x)
denotes the (left) multiplication of x by a ∈ Fqd [θ] for this module structure). If a ∈ A and

Ca =
∑
i≥0(a)iτ

i with (a)i ∈ A, then C̃a can be viewed as the skew polynomial
∑
i≥0(a)iτ̃

i, in

powers of τ̃ , which can be evaluated at elements of Td,∞; if f ∈ Td,∞, C̃a(f) =
∑
i≥0(a)iτ̃

i(f).
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It is clear that ωζ ∈ Td,∞ (here, ζ = ζ1 = ζp). We observe that

τ̃(ωζ) = (t+ ζ − θ)ωζ . (14)

This implies that, for all a ∈ Fqd [θ],

C̃a(ωζ) = a(t+ ζ)ωζ . (15)

Since the operators Dn (n ≥ 0) and τ̃ commute over Td,∞, we have that C̃a ◦ Dn = Dn ◦ C̃a
and we infer that

C̃a(Dn(ωζ)) =

n∑
i=0

Di(ωζ)Dn−i(a(t+ ζ)). (16)

Moreover, if Tr denotes the trace map of FqdK∞(π̃) over K∞(π̃), one sees that, over FqdK∞(π̃):

Tr ◦ C̃a = Ca ◦ Tr, a ∈ A.

Applying Ca to both left- and right-hand sides of (12), we get the identity

d∑
i=1

a(t+ ζi)Dn(ωζi) +

n−1∑
k=0

d∑
i=1

Dn−k(a(t+ ζi))Dk(ωζi) = Ca

(
expC

(
π̃Bn
Pn+1

))
. (17)

In the above identity, we divide by a(t+ ζp) and we sum over A(d). The coefficient of Dn(ωζp) that
we obtain is −1. The coefficient of Dn(ωζi) with i = 2, . . . , d is equal to

∑
a∈A(d)

a(t+ ζi)

a(t+ ζp)
.

To factorize it, we use the following formula in Fq(X,Y ) whose proof is easy and left to the reader
(X,Y are two indeterminates):

∑
a∈A(d)

a(X)

a(Y )
= −

d−1∏
i=1

X − Y qi

Y − Y qi
.

Replacing X with t+ ζq
j

p and Y with t+ ζp we obtain Mj . The proposition follows at once.

Remark 2.7 It may be interesting to note that, for ζ ∈ Fqd , ωζ = expC̃

(
π̃

θ−t−ζ

)
, where

expC̃(f) =
∑
i≥0

D−1
i τ̃ i(f) ∈ Td,∞

for f ∈ Td,∞, but we will not make use of this property so we omit the proof.
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2.4 Gauss-Thakur sums

We recall that Thakur established several analogues of classical results about Gauss sums such as
Stickelberger factorization theorem and Gross-Koblitz formulas and others (see for example [15, 17]).

Let p be a prime of A = Fq[θ] of degree d. We write

λp = expC

(
π̃

p

)
.

We denote by Kp the p-th cyclotomic function field extension K(λp) of K in C∞. We refer the
reader to [13, Chapter 12] for the basic properties of cyclotomic function fields. We recall here that
the integral closure OKp

of A in Kp equals the ring A[λp].
The extension Kp/K is cyclic of degree qd−1, ramified in p and θ−1. It is in fact totally ramified

in p and the decomposition group at θ−1 is isomorphic to the inertia group, therefore isomorphic
to F×q . We denote by ∆p the Galois group Gal(Kp/K). Since the constant subfield of Kp is Fq, ∆p

is canonically isomorphic to the Galois group of the extension FqdKp/FqdK (if F,G are subfields
of C∞, we always denote by FG their compositum).

There is a unique isomorphism (Artin symbol, [8, Proposition 7.5.4])

σ : (A/pA)× → ∆p

such that
σa(λp) = Ca(λp).

Once a choice of a root ζp of p is made, the Teichmüller character (see [8, Section 8.11]) induces
a unique group isomorphism

ϑp : ∆p → F×
qd
,

defined in the following way. If δ = σa ∈ ∆p for some a ∈ A, then

ϑp(δ) = a(ζp). (18)

For any finite abelian group G, we shall write Ĝ for the group Hom(G, (Fac
q )×). In particular,

ϑp ∈ ∆̂p.

Definition 2.8 For j = 0, . . . , d − 1, the basic Gauss-Thakur sum g(ϑq
j

p ) is the element of C∞
defined by:

g(ϑq
j

p ) = −
∑
δ∈∆p

ϑp(δ−1)q
j

δ(λp) ∈ Fqd [θ][λp].

The same sum is denoted by gj in [8, 15]. For our purposes, we will only need to work with g(ϑp).
By [15, Theorem I], g(ϑp) is non-zero and for all δ ∈ ∆p, we have:

δ(g(ϑp)) = ϑp(δ)g(ϑp). (19)

In the next theorem, p′ denotes the derivative of p with respect to θ.

Theorem 2.9 We have the following identity:

g(ϑp) = p′(ζp)
−1
ω(ζp).
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Proof. We use some ideas of the proof of Thakur’s result [15, Theorem II]. Let

sgn : Fqd((1/θ))× → F×
qd

be the unique group homomorphism (sign function) such that sgn(θ) = 1 and inducing the identity
map over F×

qd
. Then by [17, Theorem 2.3], we have:

sgn(g(ϑp)π̃−1) = ϑp(σp′)
−1 = p′(ζp)−1.

In virtue of (1), sgn(λθπ̃
−1) = 1. Therefore: sgn(g(ϑp)(−θ)−1/(q−1)) = p′(ζp)−1. Now, by [15,

Theorem IV], we have |g(ϑp)(−θ)−
1

q−1 | = 1, so that∣∣∣∣∣ g(ϑp)

(−θ)
1

q−1

− p′(ζ)−1

∣∣∣∣∣ < 1. (20)

By the proof of [15, Theorem II] (see Equation (3) there) or by the fact that τ(x) = Cθ(x)− θx
for all x ∈ T, we have that g(ϑq

j−1

p )q = (ζp − θ)g(ϑq
j

p ). Moreover, ρ(g(ϑq
j−1

p )) = g(ϑq
j

p ) where ρ is
defined just before (13). Therefore, we get, with τ̃ defined as in (13):

τ̃(g(ϑp)) = (ζp − θ)g(ϑp).

Iterating, this implies that for all n ≥ 1,

τ̃n

(
g(ϑp)

(−θ)
1

q−1

)
= (−θ)−

1
q−1

n−1∏
i=0

(
1− ζp

θqi

)
g(ϑp).

But:

lim
n→∞

(−θ)−
1

q−1

n−1∏
i=0

(
1− ζp

θqi

)
= ω(ζp)−1,

and, thanks to (20),

lim
n→∞

τ̃n

(
g(ϑp)

(−θ)
1

q−1

)
= p′(ζp)−1.

The Theorem follows.

Remark 2.10 It can be proved that Theorem 2.9 actually implies the functional identity (3). The
proof runs along essentially the same lines of the proof of [5, Theorem 1] and we omit the details.

3 Proofs of the main results

Let p be a prime of A of degree d. We set

λpn+1 = expC

(
π̃

pn+1

)
, n ≥ 0

and we denote by Kpn+1 the field K(λpn+1). We recall [13, Proposition 12.7] that the extension
Kpn+1/K is a Galois extension of degree en = qdn(qd − 1), unramified at each prime distinct from
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p and totally ramified at p. Moreover, Gal(Kpn+1/K) is isomorphic to
(
A/pn+1A

)×
. The prime

ideal above p is λpn+1A[λpn+1 ], (A[λpn+1 ] is the ring of integers of Kpn+1). Let ζp ∈ Fqd be any root
of p. For all n ≥ 0 and j = 0, . . . , d − 1, let us denote by Qj,n+1 the prime ideal of Fqd [θ][λpn+1 ]

which lies above θ − ζq
j

p . Let vj,n : FqdKpn+1 → Z be the valuation associated to the ideal Qj,n+1,

normalized by vj,n(ζq
j

p − θ) = en, so that we have vj,n = qdvj,n−1 over FqdKpn for all n > 0.

Lemma 3.1 Let p be a monic irreducible element of A of degree d and let n be an integer ≥ 0. Let
µ ∈ FqdKpn+1 be such that v0,n(µ) = 1 and vj,n(µ) > 1 for j = 1, . . . , d−1. Then K(µ) = FqdKpn+1 .

Proof. Since FqdKpn+1/K is an abelian extension, K(µ)/K is also an abelian extension. Let j ∈
{1, . . . , d−1}. Then, there exists σ ∈ Gal(FqdKpn+1/K) such that vj,n(σ(µ)) = 1 and vk,n(σ(µ)) > 1
for k ∈ {0, . . . , d − 1}, such that k 6= j. Thus FqdKpn+1/K(µ) is unramified at the primes above p
and for distinct k, j ∈ {0, . . . d− 1}, vj,n|K(µ) 6= vk,n|K(µ). This implies K(µ) = FqdKpn+1 .

By the fact that ζp − θq
j

= (ζq
d−j

p − θ)qj , we notice that:

v0,n(bd(ζ)) = en, vd−k,n(bd(ζ)) = qken, k = 1, . . . , d− 1. (21)

Corollary 3.2 We have that

K(g(ϑp)) = K(ω(ζp)) = FqdKp.

Proof. This follows from Theorem 2.9, [15, Theorem IV], and Lemma 3.1.

Theorem 1.1 will be deduced from the next generalization of Corollary 3.2.

Theorem 3.3 For all n ≥ 0, we have

K(Dn(ω)(ζp)) = FqdKpn+1 .

Proof. The case n = 0 is dealt in Corollary 3.2. Let us now consider the case n ≥ 0. We first
replace t = 0 in the identity (11) of Proposition 2.6. Since the fractions Mj vanish at t = 0 we get,
for some bn ∈ A \ pA and with our choice of root ζp of p:

Dn(ω)(ζp) = −
∑

a∈A(d)

a(ζp)−1Cabn(λpn+1)−
n−1∑
k=0

d−1∑
j=0

Nn−k,j(0)Dk(ω)(ζq
j

p ). (22)

We show by induction over n > 0 that Dn(ω)(ζp) ∈ Fqd [θ][λpn+1 ] and that

v0,n(Dn(ω)(ζp)) = 1, and vd−k,n(Dn(ω)(ζp)) = qk, k = 1, . . . , d− 1. (23)

Let us assume that for an integer n > 0, we have proved this property for i = 0, . . . , n − 1. By
(7) we obtain that Dn(ω)(ζp) is an algebraic integer. The identity (22), the fact that the extension
FqdKpn+1/K is abelian, and the induction hypothesis, tell us that K(Dn(ω)(ζp)) ⊂ FqdKpn+1 . We
observe on the way, by (7) and induction, that

σ(K(Dn(ω)(ζp))) = K(Dn(ω)(σ(ζp))) = K(Dn(ω)(ζp)), σ ∈ Gal(FqdKpn+1/Kpn+1).
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The induction hypothesis also says that v0,n(D1(bd)(ζp)Dn−1(ω)(ζp)) = qd for all j = 2, . . . , n and
v0,n(Dn−j(ω)(ζp)) ≥ q1+d. In particular, the element ξn ∈ FqdKpn defined in (8) with ζ = ζp
satisfies v0,n(ξn) = qd. In a similar way, one proves that vd−k,n(ξn) = qd+k, for k = 1, . . . , d − 1.
This gives (23) and it remains to apply Lemma 3.1 to conclude the proof.

Remark 3.4 The proof of Theorem 3.3 goes in the same direction of [15, Theorem IV], which
corresponds to the case n = 0.

Proof of Theorem 1.1. By Hayes [9, Theorem 7.1], the field E is the compositum of Facq and the
fields Kpn+1 for n ≥ 0, where p runs through the primes of A. Theorem 1.1 then follows from
Theorem 3.3.

Proof of Corollary 1.2. In view of Theorem 1.1, it suffices to show that if p is a prime of A of degree
d and if ζp is a root of p, then, for n ≥ 0,

K(π̃−1Dn(L)(ζp)) = FqdKpn+1 . (24)

By (4) and by the fact that Dn and τ commute, we observe that νn := Dn((t − θ)ω)(ζp) =

Dn(ω)(ζq
d−1

p )q. By Theorem 3.3, K(νn) ⊂ FqdKpn+1 . If K(νn) 6= FqdKpn+1 , the extension
FqdKpn+1/K(νn) would be purely inseparable. But this is impossible since FqdKpn+1/K is a sep-
arable extension. Hence, we have that K(νn) = FqdKpn+1 . By Leibniz rule and by induction on
n ≥ 0, we obtain:

K

(
Dn

(
1

(t− θ)ω

)
(ζ)

)
= FqdKpn+1

and (24) follows from (3). Now, Corollary 1.2 follows from yet another application of [9, Theorem
7.1].

3.1 Compatibility with class field theory

We consider here the subring ring Bd,∞ ⊂ FqdK∞(π̃)[[t]] whose elements are the formal series which
converge in D◦ = {z ∈ C∞; |z| < 1}. Let p be a prime of degree d and ζ = ζp one of its roots.
We have, in particular, that ωζ ∈ Bd,∞. We endow Bd,∞ with the Fqd [t]-linear extension of the
endomorphism τ̃ defined in (13) (we keep the same notation).

Lemma 3.5 The subset of Bd,∞ whose elements f are such that

τ̃(f) = (t+ ζ − θ)f

is the free Fqd [[t]]-module generated by ωζ .

Proof. This is clear by (14) and by the fact that the constant subring Bτ̃=1
d,∞ = {f ∈ Bd,∞; τ̃(f) = f}

is equal to Fqd [[t]].

Let Kab be the maximal abelian extension of K in C∞, Let σ be in Gal(Kab/FqdK). The
actions of σ and τ̃ over Kab commute. If we extend the action of σ Fqd [[t]]-linearly to Kab[[t]], we
obtain, thanks to Lemma 3.5, a representation

ρζ : Gal(Kab/FqdK)→ GL1(Fqd [[t]]). (25)
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We consider now the idèle group IK = K× ×
∏′

p Âp

×
×K×∞, where Âp denotes the completion

of A at the place p and the product is the restricted one as usual (we denote by Âp

×
, K×∞ etc. the

groups of invertible elements of the corresponding rings). We denote by

(·,Kab/K) : IK → Gal(Kab/K)

the global norm residue symbol. In the next proposition we compute (x,Kab/K)(ωζ) for x ∈ IK .
We recall that v∞ : K×∞ → Z is the ∞-adic valuation normalized by v∞(θ) = −1.

Proposition 3.6 Let p be a prime of A of degree d and let ζ be one of its roots. Let x be an
element of IK . The following properties hold:

1. If x = (. . . , 1, x∞, 1, . . .) with x∞ ∈ K×∞, then

(x,Kab/K)(ωζ) = sgn(x)ω
ζq

v∞(x∞) .

2. If x = (. . . , 1, xp′ , 1, . . .) with xp′ ∈ Âp′
×

and p 6= p′, then (x,Kab/K)(ωζ) = ωζ .

3. If x = (. . . , 1, xp, 1, . . .) with xp ∈ Âp

×
, then

(x,Kab/K)(ωζ) = ρζ((x,K
ab/K))(ωζ) = ψ(xp)−1ωζ ,

where ψζ : Âp → Fqd [[t]] is the unique continuous homomorphism of Fqd-algebras determined
by ψζ(θ − ζ) = t.

Proof. 1. This follows from the fact that for all n ≥ 0, any completion at a place above ∞ of
FqdKPn+1 is K∞-isomorphic to FqdK∞(π̃).

2. This is clear.

3. Let ιζ be the embedding Fqd [θ]→ Âp such that ιζ(ζ−θ) ∈ pÂp. Identifying FqdA with its image

via ιζ , we have Âp = Fqd [[θ − ζ]]. Let u ∈ Âp

×
and let a ∈ A, a ≡ u−1 (mod pn+1), then, by [11,

Theorem 5.5]:
(u,Kab/K)(λpn+1) = Ca(λpn+1).

By (17) and induction:

(u,Kab/K)(Dn(ω)(ζ)) = C̃a(Dn(ω)(ζ)).

This implies, by (16), that ρζ((u,K
ab/K)) = ψζ(u)−1 for all u ∈ Âp

×
.

4 Final remark

The element f = 1⊗ θ− θ⊗1 = t− θ ∈ T is the shtuka function associated to the Carlitz module C
(see [8, Example 7.11.8]). We have observed in (9) that ω = − expC(π̃f−1) ∈ T (note that f ∈ T×).

For n ≥ 0, we denote by A+(n) the set of monic polynomials a of A such that degθ(a) = n. By
a variant of Anderson log-algebraic theorem ([12, §4], see also [6, §8]):∑

n≥0

∑
a∈A+(n)

a−1Ca(X) = logC(X),
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with X a variable in T, and where logC(X) denotes the Carlitz logarithm, defined by ‖X‖ < q
q

q−1

(the local inverse function at 0 of expC). This implies that logC(ω) = Lω yielding (3).
The shtuka function f specializes over Facq to Jacobi-Thakur’s sums (see [16] Theorem 1.2), and

as shown in the present paper (Theorem 2.9), ω specializes over Facq to Gauss-Thakur sums.
By a suitable variant of Anderson’s log-algebraic Theorem for sign normalized rank one Drinfeld

modules (Anderson, [1, Theorem 5.1.1] and [2, Theorem 3]) and with the use of the shtuka function
associated to such a Drinfeld module (connected to Jacobi sums thanks to Thakur’s [16, Theorem
1.2]) it is conceivable to generalize (3), Theorem 1.1 and Corollary 1.2 to the more general setting
of A = Γ(X \ {∞},OX ), where X/Fq is a smooth projective curve (geometrically irreducible) and
∞ a chosen Fq-rational point. A. We hope to come back to this question in the near future.
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