Random number generation: a potential target of electromagnetic emanation analysis?

Pierre BAYON - Lilian BOSSUET - Alain AUBERT - Viktor FISCHER

Laboratoire Hubert Curien, UMR 5516 CNRS
Jean Monnet University, Member of University of Lyon
Saint-Etienne, France

pierre.bayon@univ-st-etienne.fr

18 Mai 2011
1. Introduction
 - TRNGs General Structure
 - EMA on TRNG: State of the Art

2. Case Study
 - TRNG Principle
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench

3. Tools Used
 - Frequentia Analysis
 - Cross-Correlation Cartography

4. Results

5. Conclusion
Outline

1. Introduction
 - TRNGs General Structure
 - EMA on TRNG: State of the Art

2. Case Study
 - TRNG Principle
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench

3. Tools Used
 - Frequential Analysis
 - Cross-Correlation Cartography

4. Results

5. Conclusion
This work has been done within the ANR EMAISeCi project (http://www.lirmm.fr/emaiseci/).
This presentation is an overview of my recent work on EMA on TRNG.
TRNGs General Structure

- **Source of randomness and entropy extractor:**
 - Should give as much entropy per bit as possible.
 - Should enable sufficient bit-rate.
 - Shouldn’t be manipulable (robustness).

- **Algorithmic post-processing:**
 - Enhances statistical properties of the output without reducing the entropy.

- **Embedded tests:**
 - Detect immediately the generator’s total failure.
 - Evaluate the quality of the source of randomness in real time.
How to Attack a TRNG

- **Randomness Source**
- **Entropy Extractor**
- **Algorithmic Post-Processing**
- **TRNG Output**
- **Raw Signal Output**
- **Embedded Tests**
- **Dysfunction Alarm**
- **Analysis of the output**

Fault injection (locking phenomena for example)

If any tests is embedded and the attacker is manipulating the raw signal output, he will have to make the embedded tests pass...

... or manipulate the alarm
No paper dealing with passive or active EM attacks on TRNG to date.

Some tests regarding the sensibility of the TRNG to different parameters such temperature, core voltage, ..., can be viewed as attacks.

Only one dealing with periodic signal injection on the power line rises: [MM09] - The Frequency Injection Attack on Ring-Oscillator-Based True Random Number Generators.
EMA on cryptographic systems is something well-tried.

It should not be a problem then to apply these methodologies to TRNG EMA.

- FPGA implementation of a block cipher is a complex structure (more than 1000 logic cells and registers).
- So, area of interest gives a relatively high electromagnetic emanation compared to the surrounding blocks.

But ...

- TRNG area is much smaller (usually not more than 300 logic cells and 100 registers).
- So, area of interest gives an electromagnetic emanation that is lower than that of the cipher for example.
- TRNG are to be embedded in a cryptographic system, so with a surrounding using much more logic cells.
Outline

1 Introduction
 - TRNGs General Structure
 - EMA on TRNG: State of the Art

2 Case Study
 - TRNG Principle
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench

3 Tools Used
 - Frequential Analysis
 - Cross-Correlation Cartography

4 Results

5 Conclusion

EM analysis on random number generator
Introduction

Case Study

Tools Used

Results

Conclusion

Principle

- Improvement of an existing TRNG ([SMS07] A Provably Secure True Random Number Generator with Built-in Tolerance to Active Attacks)

- Use the RO-generated clock jitter as a source of randomness.

EM analysis on random number generator
Implementation

- Study performed on an Actel Fusion M7AFS600.
- Two versions of topology were made, differing in TRNG position on the chip.
- The TRNGs were composed of 54 rings of 5 elements (frequency of the ring roughly equal to 200MHz).
- Other frequencies involved in the chip: 36MHz and 127MHz (PLL frequencies), 100MHz (internal RC oscillator).

Figure: TRNG testing environment.
Figure: On the left the first position, on the right the second one.
EMA Test Bench

EM analysis on random number generator
Test Bench Specifications

- Oscilloscope Lecroy WavePro 735Zi
 - Bandwidth up to 3.5GHz
 - Maximum sampling frequency 40G/s

- XYZ Prior Stage
 - In (X,Y) scale: 114mm x 75mm
 - Resolution: 40 nm
 - Repeatability of movement: 1um

- Rohde&Schwarz HZ-15 Probe Set:
 - Electrical and magnetic probes.
 - Bandwidth: 30MHz - 3GHz

- Amplifiers:
 - Rohde&Schwarz HZ-16 amplifier - BW: 30MHz - 3GHz, gain 20dB, noise figure 4.5dB
 - Miteq amplifier:
 - AMF-3F-00100100-07-10P, BW: 100MHz - 1GHz, gain 48dB, noise figure 0.7dB
 - AMF-3F-00800250-06-13P, BW: 800MHz - 2.5GHz, gain 45dB, noise figure 0.6dB
Acquisition Setup

- Sampling used: 20G sample / s
- Number of points on each trace: 100000
- Before being acquired, each trace is averaged 16 times.

All the results presented in the following have been obtained using the Rohde&Schwarz amplifier (the only one available at the beginning).
The calibration of the test bench has been done thanks to a decapsulated chip.

We are able to put precisely the probe over the DIE.
Outline

1 Introduction
 - TRNGs General Structure
 - EMA on TRNG: State of the Art

2 Case Study
 - TRNG Principle
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench

3 Tools Used
 - Frequential Analysis
 - Cross-Correlation Cartography

4 Results

5 Conclusion
From the method proposed in \(^1\) :

- A Fast Fourier Transform of each traces is computed.
- Then to obtain a cartography at a certain frequency, one just needs to take the module of the FFTs at this frequency.

Let's take two temporal measurements A and B.

Cross-Correlation Function

\[
\Gamma_{A,B}(d) = \frac{\text{cov}(A, B_{-d})}{\sigma_A \cdot \sigma_B} = \frac{d + \inf(n_A, n_B) - 1}{\sqrt{\sum_{n=0}^{n_A} (A(n) - \overline{A(n)})^2} \sqrt{\sum_{n=0}^{n_B} (B(n-d) - \overline{B(n)})^2}} \sum_{n=d}^{d+\inf(n_A, n_B)-1} (A(n) - \overline{A(n)})(B(n-d) - \overline{B(n)})
\]

With:

- σ_A and σ_B the standard deviations of the observations A and B.
- n_A and n_B the number of temporal samples of A and B.
- $\overline{A(n)}$ and $\overline{B(n)}$ the mean values of A and B.
Figure: From top to bottom: Measurement A, Measurement B, xcov on A and B, xcorr on A and B
What we need in order to obtain a map

- A fixed reference observation point \((X_{\text{ref}}, Y_{\text{ref}})\).
- Scanning over all the \((X,Y)\) positions...
- ... and evaluate the maximum of the \(\text{NXC}((X_{\text{ref}}, Y_{\text{ref}}),(X,Y))\).

Then we will have to compute a map for each position as reference point. If we have \(N_P\) points, we will get at the end \(N_P\) maps.
Analyzing N_P maps, especially if N_P is big, is very time consuming.

Maps where observations points are close to each others will look alike (or be correlated).

So, maps could be classified in different groups using a bidimensional correlation function.

Bidimensional Correlation Function

\[
\Gamma_{M,N}^{2D}(p, q) = \frac{\text{cov}(M, N_{-p, -q})}{\sigma_M \sigma_N}
\]

With:

- M, N two maps.
- σ_M and σ_N, their standard deviation.
EM analysis on random number generator

Outline

1. Introduction
 - TRNGs General Structure
 - EMA on TRNG: State of the Art

2. Case Study
 - TRNG Principle
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench

3. Tools Used
 - Frequential Analysis
 - Cross-Correlation Cartography

4. Results

5. Conclusion
To deal with the different orientations of the probe we have set the reference for the angle as:

![Diagram of orientation angles]

- 0°
- 90°
- 180°
- 270°
Figure: On the left the first position, on the right the second one.
Spotting the PLL using Frequential Analysis

Figure: Frequential cartography at 127MHz for different orientations of the probe.
Figure: One of the Cross Correlation map obtained for position 1 on the left, and position 2 on the right with probe at 90°.
Spotting the Ring using Frequential Analysis

Figure: Frequential cartography between 195MHz and 197MHz for position 1 on left and position 2 on right.
Outline

1. Introduction
 - TRNGs General Structure
 - EMA on TRNG: State of the Art

2. Case Study
 - TRNG Principle
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench

3. Tools Used
 - Frequentional Analysis
 - Cross-Correlation Cartography

4. Results

5. Conclusion
Using frequential analysis and knowing what was inside the chip we were able to locate:

- The position of the PLL and the flip-flop that use given frequencies.
- The position of the ring oscillators for the two different positions.

Using Cross Correlation we were able to locate the PLL and the flip-flop.
Future Work

- Obtain a more accurate cartography.
- Active EM attacks on TRNG.
- Usage of EM analysis to characterize ring oscillators (locking, ...).
Thank you, any questions?