TD5: Relations/Groupe/Anneaux...

Mathématiques S1

Exercice 1

Soit A, B deux points du plan \mathbb{R}^2 . Dire (sans démonstration) si \mathcal{R} est une relation d'équivalence (ou d'ordre) et si oui déterminer les classes d'équivalences.

- a) xRy si x et y sont 'equidistant de A,
- b) $x\mathcal{R}y \text{ si } \vec{Ax} = \vec{yA},$
- c) $xRy \text{ si } \vec{xy} \text{ et } \vec{AB} \text{ sont colinéaire.}$
- d) $x\mathcal{R}y$ si |xy| = |AB|.

Exercice 2

Justifier rapidement si \mathcal{R} est (ou non) une relation d'équivalence sur \mathbb{Z} . Le cas échéant, déterminer les classes d'équivalences.

- $-x\mathcal{R}y \Leftrightarrow x+y \text{ est un multiple de } 2.$
- $-x\mathcal{R}y \Leftrightarrow xy \text{ est un multiple de } 3.$
- $-x\mathcal{R}y \Leftrightarrow x+y \text{ est un multiple de } 3.$
- $-x\mathcal{R}y \Leftrightarrow x-y \text{ est un multiple de 3. (*)}$

Exercice 3

Soit $n \in \mathbb{N}^*$. On définit \mathfrak{S}_n comme l'ensemble des bijections de $\{1,\ldots,n\}$ dans $\{1,\ldots,n\}$. On définit la loi \circ sur \mathfrak{S}_n par $\sigma \circ \tau(x) = \sigma(\tau(x))$. C'est la composée des deux bijections. Pour visualiser un élément $\sigma \in \mathfrak{S}_n$ on le notera

$$\left(\begin{array}{cccc} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{array}\right).$$

- a) Calculer $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$.
- b) Montrer que (\mathfrak{S}_n, \circ) est un groupe.
- c) Montrer que \circ n'est pas commutative (on pourra se restreindre au cas n=3).

d) Soit
$$f := \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
, $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$. Comparer $(f \circ g)^{-1}$ et $f^{-1} \circ g^{-1}$.

Exercice 4

Soit A l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} . On munit A de l'addition et du produit usuels ((f+g)(x)=f(x)+g(x)) et $(f\times g)(x)=f(x)\times g(x)$.

- 1. Montrer que A est un anneau. Est-il intègre?
- 2. Donner les éléments inversibles de A.

Exercice 5

Soit $A = \{a + ib \mid a, b \in \mathbb{Z}\}$, muni du produit et de la multiplication complexe. Montrer que A est un sous-anneau de \mathbb{C} et donner ses éléments inversibles.

Exercice 6 (*)

Soit (G, \circ) un groupe, e son élément neutre et F un ensemble.

On dit que G agit sur F via \cdot si \cdot et une application de $G \times F$ vers F telle que $(g \circ g') \cdot f = g \cdot (g' \cdot f)$ et $e \cdot f = f$ pour tous $g, g' \in G$ et $f \in F$. On définit la relation \mathcal{R} sur F par

$$x\mathcal{R}y$$
 si et seulement si $\exists g \in G, g \cdot x = y$.

Quelles propriétés vérifie \mathcal{R} ?

Exercice 7 (*)

- a) Soit $E = \{f : \mathbb{C} \to \mathbb{C} \mid \exists a \in \mathbb{C}^*, \exists b \in \mathbb{C} \forall z \in \mathbb{C}, f(z) = az + b\}$ muni de la composition. Montrer que c'est un groupe. Ce groupe est-il commutatif?
- b) Qu'en est-il pour $E = \{ f : \mathbb{C} \to \mathbb{C} \mid \exists \, a \in \mathbb{C}^*, \exists \, b \in \mathbb{C} \forall z \in \mathbb{C}, \, f(z) = a\overline{z} + b \}$ muni de la composition?

Exercice 8 (*)

Déterminer le nombre d'éléments du plus petit groupe non-commutatif.

Exercice 9 (*)

Soit (G, .) un groupe,

- i) Montrer que si e et e' sont des éléments neutres alors e = e'.
- ii) Soit $g \in G$, $\Phi_g : \begin{cases} G \to G \\ h \mapsto g.h \end{cases}$, $\Psi_g : \begin{cases} G \to G \\ h \mapsto g.h.g^{-1} \end{cases}$ Montrer que Φ et Ψ sont des bijections.
- iii) Soit \mathcal{R} la relation

$$x\mathcal{R}y \Leftrightarrow \exists g, \ \Psi_g(x) = y.$$

Montrer que c'est une relation d'équivalence.

iv) Montrer que ($\{\psi_g \mid g \in G\}$, \circ) est un groupe. Trouver un exemple où il n'est pas isomorphe à G.