TD8: suite du TD7

Exercice 1 (La puissance de Cayley-Hamilton)

Soit $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}$. Calculer A^4 et A^{-1} grace à Cayley-Hamilton. Meme question pour $A=\begin{pmatrix}0&1&1\\1&0&1\\0&0&1\end{pmatrix}$

Exercice 2 (La puissance de la diagonalisation...)

Dans les deux cas suivants, diagonaliser et calculer A^n :

$$a)A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & 0 & 1 \end{pmatrix} \qquad b) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

On considère les suites récurrentes u, v et w vérifiant ceci :

$$\begin{cases} u_{n+1} = u_n + w_n \\ v_{n+1} = u_n + v_n \\ w_{n+1} = v_n + w_n \end{cases}.$$

Calculer u_n, v_n et w_n en fonction de u_0, v_0 et w_0

Exercice 3 (...et de la trigonalisation)

Trigonaliser cette matrice et calculer sa puissance n-ième $\begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$

Exercice 4 (La puissance ultime)

On considère la matrice $A = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. On donne deux méthodes pour calculer A^n .

- 1. Calculer le polynome minimal de A. Montrer qu'on peut écrire A^n sous la forme $u_nA + v_nId$, puis calculer les coefficient u_n et v_n grace à l'exercice précédent
- 2. Trigonaliser A

Exercice 5 (Polynomes annulateurs)

Soit f un endomorphisme d'un \mathbb{k} -espace vectoriel E vérifiant $f^3-f^2+f-Id_E=0$.

- 1. Que dire des valeurs propres de f (si $\mathbb{k} = \mathbb{R}$ ou \mathbb{C}).
- 2. f est-il inversible, si oui, donner son inverse.

Exercice 6 (Un peu d'exercices classiques, ça fait pas de mal...)

Dans \mathbb{R}^4 on considère les sous-espaces vectoriels

$$F = \{(x, y, z, t) | (x + y + z = 0) \text{ et } (x - y + t = 0)\}$$

$$G = \{(x, y, z, t) | (2y + z - t = 0) \text{ et } (x - z - t) = 0\}$$

Sont-ils supplémentaires?

Construire un endomorphisme f de \mathbb{R}^4 tel que Kerf = F et Im(f) = G.