Université de Lyon M2 Recherche Math

Algèbres de Lie et Généralisations Année 2013/2014

TD nº 3

Exercice 1. Montrer que \mathfrak{sl}_n est une algèbre de Lie semisimple.

On pourra prendre pour base de n la famille formée des éléments de la forme

- $-E_{i,j}$ pour $i \neq j$,
- $-E_{i,i}-E_{i+1,i+1}$ pour $1 \le i \le n-1$.

et calculer la forme de Killing dans cette base.

Exercice 2. 1. Soit $x \in \mathfrak{g} := \mathfrak{gl}_n$ diagonalisable. Montrer que ad $x \in \mathfrak{gl}(\mathfrak{g})$ l'est aussi.

2. Rappelons que le résultat de 1 est valable si l'on remplace diagonalisable par nilpotent. Montrer que, si $x = x_s + x_n$ est la décomposition de Dunford de $x \in \mathfrak{gl}_n$, alors $\mathrm{ad}_{\mathfrak{g}}(x_s) + \mathrm{ad}_{\mathfrak{g}}(x_n)$ est la décomposition de Dunford de $\mathrm{ad}_{\mathfrak{g}}(x)$.

Exercice 3. Soit \mathfrak{g} une sous-algèbre de Lie semi-simple de $\mathfrak{gl}(V)$. Soit $V = W_1 \oplus \cdots \oplus W_k$ une décomposition de V en \mathfrak{g} -modules simples. Pour $i \in [1, k]$, on pose $\mathfrak{g}_{W_i} := \{x \in \mathfrak{gl}(V) \mid x(W_i) \subset W_i, tr(x_{|W}) = 0\}$. Enfin, on pose $\mathfrak{h} := \{x \in \mathfrak{gl}(V) \mid [x, \mathfrak{g}] \subset \mathfrak{g}\}$ et $\mathfrak{t} := \mathfrak{h} \cap \bigcap_{i=1}^k \mathfrak{g}_{W_i}$.

- 1. Montrer que \mathfrak{t} est une sous-algèbre de Lie de $\mathfrak{gl}(V)$ et que \mathfrak{g} est un idéal de \mathfrak{t} .
- 2. Soit \mathfrak{a} l'orthogonal de \mathfrak{g} pour la forme de Killing $L_{\mathfrak{t}}$.
 - (a) Montrer que \mathfrak{a} et $\mathfrak{a} \cap \mathfrak{g}$ des idéaux de \mathfrak{g} et que $(L_{\mathfrak{t}})_{|\mathfrak{a} \cap \mathfrak{g}} = 0$.
 - (b) En déduire que $\mathfrak{a} \cap \mathfrak{g} = 0$ puis que $\mathfrak{t} = \mathfrak{g} \oplus \mathfrak{a}$ en tant qu'espace vectoriel.
 - (c) Soit $a \in \mathfrak{a}$, montrer que $[\mathfrak{g}, a] = 0$ et en déduire que $a_{|W_i}$ est un endomorphisme du \mathfrak{g} -module W_i .
 - (d) Montrer que $a_{|W_i} = 0$ puis que $\mathfrak{t} = \mathfrak{g}$.

- 3. (a) Soit $x \in \mathfrak{g}_{W_i}$. Montrer que $x_s, x_n \in \mathfrak{g}_{W_i}$.
 - (b) Soit $x \in \mathfrak{h}$. En utilisant l'exercice 2, montrer que \mathfrak{g} est stable par $\mathrm{ad}_{\mathfrak{gl}(V)}(x_s)$ et $\mathrm{ad}_{\mathfrak{gl}(V)}(x_s)$.
 - (c) En déduire que, si $x \in \mathfrak{g}$ alors $x_s, x_n \in \mathfrak{g}$.
- 4. Montrer qu'un élement $x \in \mathfrak{g}$ est $\mathrm{ad}_{\mathfrak{g}}$ -semisimple (resp. $\mathrm{ad}_{\mathfrak{g}}$ -nilpotent) si et seulement si il est diagonalisable (resp. nilpotent) comme élément de $\mathfrak{gl}(V)$.