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Abstract

Let g be a complex simple Lie algebra with a Borel subalgebra b. Consider the semidirect
product Ib = b⋉ b∗, where the dual b∗ of b is equipped with the coadjoint action of b and
is considered as an abelian ideal of Ib. We describe the automorphism group Aut(Ib) of
the Lie algebra Ib. In particular we prove that it contains the automorphism group of the
extended Dynkin diagram of g. In type An, the dihedral subgroup was recently proved to
be contained in Aut(Ib) by Dror Bar-Natan and Roland van der Veen in [1] (where Ib is
denoted by Iun). Their construction is ad hoc and they asked for an explanation which is
provided by this note. Let n denote the nilpotent radical of b. We obtain similar results for
Ib = b ⋉ n∗ that is both an Inönü-Wigner contraction of g and the quotient of Ib by its
center.

1. Introduction

Given any complex Lie algebra a, one can consider the semi-direct product Ia := a⋉ a∗.
where a∗ is the dual of a, considered as an abelian ideal, and a acts on a∗ via the coadjoint
action. The pair (Ia, a) is an example of the Drinfeld double construction with zero co-
bracket.

As mentioned in [1], for applications in knot theory and representation theory, the most
important case is when a = b is the Borel subalgebra of some simple Lie algebra g. It is
precisely the situation studied here. In addition to [1], several examples of these algebras
appear with variations in the literature. In [8], Nappi-Wittney use the case when g = sl2
in conformal �eld theory. Several authors also consider Ib := b⋉ n∗ where n is the derived
subalgebra of b. It is the quotient of Ib by its center. Note that b ⋉ n∗ is a contraction of
g (see Section 2.1 for details). When g = gln, this algebra appears in an associative setting
in Knutson and Zinn-Justin's work [6], see below. In [4, 3], Feigin uses b ⋉ n∗ in order to
study degenerate �ag varieties for g = sln. For a general semisimple Lie algebra g, in [9],
Panyushev and Yakimova study the invariants of b ⋉ n∗ under the action of their adjoint
group. Finally, in [10, 11], similar considerations are studied replacing b by an arbitrary
parabolic subalgebra of g.

The aim of this note is to give new interpretations of Ib and Ib in the language of
Kac-Moody algebras and to completely describe the automorphism groups of Ib and Ib.

Before describing this group, we introduce some notation. Let r denote the rank of g
and G the adjoint group with Lie algebra g. Let B be the Borel subgroup of G with b as
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Ẽ7 F̃4

Aut(D̃) = S3 Aut(D̃) = Z/2Z Aut(D̃) is trivial

D̃4
Ẽ8
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Figure 1: Extended Dynkin diagrams and their automorphisms

Lie algebra. Consider two abelian additive groups: the quotient g/b and the space Mr(C)
of r × r-matrices.

An important ingredient is the extended Dynkin diagram of g. On Figure 1, these
diagrams and their automorphism groups are shortly recalled (see Section 2.2). The notation
D(ℓ) stands for the dihedral group of order 2ℓ, not to be confused with the Dynkin diagram
of type Dℓ.

The following is the main result of the paper (see also Theorem 16 below).

Theorem 1. The neutral component Aut(Ib)◦ of the automorphism group Aut(Ib) of the
Lie algebra Ib decomposes as

C∗ ⋉
(
(B ⋉ g/b)×Mr(C)

)
.

The group of components Aut(Ib)/Aut(Ib)◦ is isomorphic to the automorphism group of the
extended Dynkin diagram of g and can be lifted to a subgroup of Aut(Ib).

The details of how these subgroups act on Ib are given in Section 3. Section 4 explains
how the semidirect products are formed.
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One of the amazing facts is that the extended Dynkin diagram of g plays a crucial role
in Aut(Ib). On one hand, we explain this by constructing the extended Cartan matrix of g
in terms of Ib in Section 3.1. On the other hand, this diagram is the Dynkin diagram of the
untwisted a�ne Lie algebra constructed from the loop algebra of g. A second explanation is
given by Theorem 4 that realizes Ib as a subquotient of the a�ne Lie algebra associated to
g.

More generally, Ib is a degeneration limϵ→0 g
ϵ
+ with gϵ+

∼= g⊕h for ϵ ∈ C\{0}. In Section
2, we explain how to interpret this degeneration in the a�ne Lie algebra setting. We also
study the possible lifting of θ ∈ Aut(D̃) to Aut(gϵ+), see Section 3.5.

Link with other works. In [6], Knutson and Zinn-Justin de�ned a degeneration •
of the standard associative product on Mn(C). Let b denote the set of upper triangular
matrices. Identifying the vector space Mn(C) with b×Mn(C)/b in a natural way one gets

(R,L) • (V,M) = (RV,RM + LV ),

for any R, V ∈ b and L,M ∈ Mn(C)/b. The Lie algebra of the group (Mn(C), •)× of
invertible elements of this algebra is b ⋉ Mn(C)/b, where the product is de�ned similarly
to that of Ib. Note also that a cyclic automorphism appears in [6]. It corresponds to the
�unexpected cyclic automorphism� of [1] and, in our setting, to the cyclic automorphism
of the extended Dynkin diagram of type An−1. Moreover [6, Proposition 2], which realizes
(Mn(C), •) as a subquotient of Mn(C[t]), is similar to our Theorem 4.

A generalization of Ib is the following: �x a simple Lie algebra g and a parabolic subal-
gebra p of g. Let n−p (∼= g/p) be the nilradical of a parabolic subalgebra of g opposite to p.
Then qp := p⋉n−p is also a degeneration of g. In the study of semi-invariants of qp some data
linked with the extended Dynkin diagram also come up in [13, Theorem 5.5] (Borel case) and
in [11, Proposition 5.2.1] (general case). In type An−1, standard parabolics are characterized
by an ordered partition λ = (λ1, . . . , λk) of n. Transforming λ into µ := (λk, λ1, . . . , λk−1),
the cyclic action of Z/nZ coming from the symmetries of the extended Dynkin diagrams
described in [1] allows to write qpλ ∼= qpµ . This explains many symmetries noted in [11], see
(3.9) in loc. cit..

Acknowledgements. We are very grateful to Dror Bar Natan for useful discussions
that had motivated this work. The authors are partially supported by the French National
Agency (Project GeoLie ANR-15-CE40-0012).

2. The Lie algebras Ib, gϵ
+ and g ⊗ C[t±1]

2.1. De�nitions of Ib and gϵ+
Let g be a complex simple Lie algebra with Lie bracket denoted by [ , ]. Fix a Borel

subalgebra b of g and a Cartan subalgebra h ⊂ b. Let b− be the Borel subalgebra of g
containing h which is opposite to b. Set V = b⊕b− viewed as a vector space. In this section,
we de�ne the Lie bracket [ , ]ϵ on V depending on the complex parameter ϵ, interpolating
between Ib and the direct product g⊕ h.
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Let n and n− denote the derived subalgebras of b and b− respectively. Fix ϵ ∈ C. De�ne
the skew-symmetric bilinear bracket [ , ]ϵ on V by

[x, x′]ϵ = [x, x′] ∀x, x′ ∈ b
[y, y′]ϵ = ϵ[y, y′] ∀y, y′ ∈ b−

[x, y]ϵ = (ϵX + ϵH
2
, H

2
+ Y ) ∀x ∈ b y ∈ b− where [x, y] = X +H + Y ∈ n⊕ h⊕ n−

Then [ , ]ϵ satis�es the Jacobi identity (see discussion after (3) for a proof). Endowed
with this Lie bracket, V is denoted by gϵ+. The linear map

φϵ : b⊕ b− −→ b⊕ b−

(x, y) 7−→ (x, ϵy) for any x ∈ b, y ∈ b−

allows to interpret gϵ+ as an Inönü-Wigner contraction [5] of g1+. Indeed, for any nonzero ϵ,
we have

[X, Y ]ϵ = φϵ
−1([φϵ(X), φϵ(Y )]1) ∀X, Y ∈ V . (1)

We now describe g1+. Using the triangular decomposition

g = n⊕ h⊕ n−, (2)

one de�nes the injective linear map

ι1g : g = n⊕ h⊕ n− −→ g1+
(ξ, α, ζ) 7−→ (ξ + α

2
, α
2
+ ζ)

and checks that it is a Lie algebra homomorphism whose image is an ideal of g1+. Moreover,
the image of

ι1h : h −→ g1+
α 7−→ (−α, α)

is the center of g1+ and, as Lie algebras,

g1+ = ι1g(g)⊕ ι1h(h). (3)

Observe that we never used the Jacobi identity for [ , ]1 to prove the isomorphism (3).
Hence, we can deduce from it that [ , ]1 satis�es the Jacobi identity. Then, the expression (5)
implies that [ , ]ϵ satis�es the Jacobi identity for any nonzero ϵ. Since this property is closed
on the space of bilinear maps, it is satis�ed by [ , ]0 too.

Let g be a complex simple Lie algebra with Lie bracket denoted by [ , ]. Fix a Borel
subalgebra b of g and a Cartan subalgebra h ⊂ b. Let b− be the Borel subalgebra of g
containing h which is opposite to b. Set V = b⊕b− viewed as a vector space. In this section,
we de�ne the Lie bracket [ , ]ϵ on V depending on the complex parameter ϵ, interpolating
between Ib and the direct product g⊕ h.
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Let n and n− denote the derived subalgebras of b and b− respectively, so that we can
consider the triangular decomposition

g = n⊕ h⊕ n−.

The following is then an isomorphism of vector spaces

ι1 : g⊕ h ∼= (n⊕ h⊕ n−)⊕ h −→ V = b⊕ b−

((ξ, α, ζ), α′) 7−→ (ξ + α
2
− α′, α

2
+ ζ + α′)

(4)

and the Lie bracket on g⊕ h induces a bracket [ , ]1 on V := b⊕ b−.
Then, for ϵ ∈ C \ {0}, we consider the isomorphism of vector space

φϵ : b⊕ b− −→ b⊕ b−

(x, y) 7−→ (x, ϵy)

which allows us to de�ne a modi�ed Lie bracket [ , ]ϵ on V via

[X, Y ]ϵ = φϵ
−1([φϵ(X), φϵ(Y )]1) ∀X, Y ∈ V . (5)

More explicitly, this yields

[x, x′]ϵ = [x, x′] ∀x, x′ ∈ b
[y, y′]ϵ = ϵ[y, y′] ∀y, y′ ∈ b−

[x, y]ϵ = (ϵX + ϵH
2
, H

2
+ Y ) ∀x ∈ b y ∈ b− where [x, y] = X +H + Y ∈ n⊕ h⊕ n−.

This formula is also de�ned for ϵ = 0, thus de�ning a bilinear map [ , ]0. Since the property
of being a Lie bracket is closed among the space of bilinear maps, we see that [ , ]0 is also a
Lie bracket.

For ϵ ∈ C, we de�ne the Lie algebra gϵ+ as V endowed with [ , ]ϵ. By construction we
have gϵ+

∼= g⊕ h when ϵ ̸= 0.

Consider now Ib with its Lie bracket [ , ]Ib de�ned as follows: b∗ is an abelian ideal
on which b acts by the coadjoint action. Denote by κ : g−→ g∗ the Killing form on g.
Since the orthogonal complement of b with respect to κ is n, b∗ identi�es with g/n as a
b-module. Identify g/n with b− in a canonical way (that is by y ∈ b− 7−→ y+ n) and denote
by π : g−→ b− the quotient map. Then Ib = b ⊕ b∗ identi�es with b ⊕ b− = V . Let
[ , ]I denote the Lie bracket transferred to V from [ , ]Ib. Let x, x′ ∈ b and y, y′ ∈ b− and
decompose [x, y′]− [x′, y] as X +H + Y with respect to g = n⊕ h⊕ n−. Then

[(x, y), (x′, y′)]I = ([x, x′], H + Y ). (6)

We now describe g0+. The Lie bracket [ , ]0 on V = g0+ is given by

[(x, y), (x′, y′)]0 = ([x, x′],
H

2
+ Y ). (7)
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Comparing (6) and (7), one gets that the following linear map η is a Lie algebra isomorphism
between g0+ and Ib:

η : V = b⊕ (h⊕ n−) −→ b⊕ b∗ = Ib
(x, h, y) 7−→ (x, κ(2h+ y,□)).

Replacing b− and b∗ by n− and n∗ respectively, one de�nes gϵ and one gets the iso-
morphsims g ≃ gϵ (for any ϵ ̸= 0) and g0 ≃ Ib.

2.2. The a�ne Kac-Moody Lie algebra

The untwisted a�ne Kac-Moody Lie algebra gKM is constructed from the simple Lie
algebra g. We refer to [7, Chapters I and XIII] for the basic properties of gKM. Denote by
z(gKM) the one dimensional center of gKM. Consider the Borel subalgebra bKM of gKM and
its derived subalgebra nKM. By killing the semi-direct product and the central extension
from the construction of gKM, one gets

g̃ := [gKM, gKM]/z(gKM)
∼= C[t±1]⊗ g,

and
b̃ := (bKM ∩ [gKM, gKM])/z(gKM) ⊂ g̃

ñ := (nKM ∩ [gKM, gKM])/z(gKM) = [b̃, b̃].

Identify g with the subspace C ⊗ g ⊂ g̃. Note that gKM/z(gKM) = g̃ + Cd where d acts as
the derivation t d

dt
.

We consider the set of (positive) roots Φ(+) (resp. Φ̃(+)) of g (resp. gKM) and the set of
simple roots ∆ (resp. ∆̃) with respect to h ⊂ b ⊂ g (resp. h+ Cd+ z(gKM) ⊂ bKM ⊂ gKM).
We recall the following classical facts:

nKM ∼= ñ =
⊕
α∈Φ̃+

g̃α

where g̃α ∼= gKM
α is the root space associated to α. Moreover, ñ is generated, as a Lie algebra

by the subspaces (g̃α)α∈∆̃. The identi�cation of ∆ with {α ∈ ∆̃ |α(d) = 0} yields the above-
described embedding g ⊂ g̃. Denoting by δ the indivisible positive imaginary root in Φ̃, we
have

Φ̃ = {nδ + α |α ∈ Φ ∪ {0}, n ∈ Z} \ {0}

∆̃ = ∆ ∪ {α0 + δ}

where α0 is the lowest root of Φ. Note that g̃nδ = tnh (n ∈ Z), using the notation g̃0 := h.
Finally, the extended Dynkin diagram can be reconstructed from the combinatorics of ∆̃

in Φ̃. Indeed, the nodes correspond to the elements of ∆̃ and the non-diagonal entries aα,β of
the generalized Cartan matrix (encoding the arrows of the diagram) are aα,β = −max{n ∈
N|β + nα ∈ Φ̃} by Serre relations.
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We list in Figure 1 the extended Dynkin diagram D̃g in each simple type. The black node
corresponds to the simple root α0+ δ. We also provide the automorphism group of D̃g. Note
that by the de�nition of gKM given in [7, �1.1], any θ ∈ Aut(D̃g) provides an automorphism
θKM ∈ Aut(gKM) stabilizing both h + Cd + z(gKM) and bKM and permuting the generators
eα, fα (α ∈ ∆̃) via θKM(eα) = eθ(α) and θKM(fα) = fθ(α). Since z(gKM) and [gKM, gKM] are
characteristic in gKM, i.e. stabilized by any automorphism of Lie algebra, this yields an
automorphism θ̃ ∈ Aut(g̃). Note that some choices have to be made for θKM(d), but the
automorphism θ̃ only depends on the θKM(eα), θKM(fα) with α ∈ ∆̃, since those elements
generate g̃.

It is unclear whether θ̃ is C[t]-linear in general. When it is C[t]-linear, we mention some
consequences in Remark 15. However, we can still get the following general result.

Lemma 2. With the above notations, there exists λ ∈ {±1} such that

∀x ∈ g̃, θ̃(tx) = λtθ̃(x). (8)

In particular, the automorphism θ̃ ∈ Aut(g̃) stabilizes tñ.
Moreover, λ = 1 whenever the order of θ is odd.

Proof. Note that, since θKM acts on the semi-group Φ̃+, it stabilizes the semi-group of
positive imaginary roots N∗δ and thus �xes its generator δ. In particular, in the additive
group Φ̃∪{0}, we have θKM(·+ δ) = δ+ θKM(·). De�ning Ψ on g̃ via Ψ(x) = θ̃−1(t−1θ̃(tx)),
we thus get that Ψα := Ψ|g̃α is an invertible linear map on g̃α for any α ∈ Φ̃ ∪ {0}. Since
dim g̃α = 1 for α ∈ Φ̃\Zδ, we can thus de�ne λα as the element of C× such that Ψα = λαIdg̃α .

Let α, β ∈ Φ̃ ∪ {0}, xα ∈ g̃α, xβ ∈ g̃β. By C[t]-bilinearity of the bracket, we get

Ψα+β([xα, xβ]) = θ̃−1(t−1[θ̃(txα), θ̃(xβ)]) = [Ψα(xα), xβ]. (9)

For α = 0, xα = h ∈ h and β ∈ Φ̃ \ Zδ, we get

λββ(h)xβ = Ψβ(β(h)xβ)
(9)
= β(Ψ0(h))xβ. (10)

In particular, Ψ0 induces on h∗ a linear map tΨ0 sending β to λββ for each β ∈ Φ ⊂ Φ̃ \ Zδ.
If β, γ ∈ ∆ correspond to connected nodes of the Dynkin diagram of g, then β, γ and β + γ
are eigenvectors of tΨ0 so λβ = λγ. By connectivity of the Dynkin diagram, we get that the
λβ (β ∈ ∆) are all equal to a single value λ. Since ∆ generates h∗, we get Ψ0 = λIdg̃0 .

For any β ∈ Φ̃ \ Zδ, we can choose h ∈ h such that β(h) ̸= 0. Applying (10) yields
λββ(h)xβ = β(λh)xβ, that is λβ = λ.

When α = −β ∈ ∆, n ∈ Z, we get Ψnδ(t
n[xα, x−α])

(9)
= [Ψα(xα), t

nx−α] = λtn[xα, x−α].
Since the tn[g̃α, g̃−α] (α ∈ ∆) generate g̃nδ, this yields Ψnδ = λIdg̃nδ

. Finally, we have proved
that Ψ = λIdg̃ and this yields (8), with λ ∈ C.

Let m be the order of θ. Equation (8) can be rewritten as t−1θ̃t = λθ̃ where t±1 denotes
the multiplication by t±1 in g̃. This identity to the power m yields λm = 1.
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In the setting of [7, Chapter XIII], the Cartan involution ω of g̃ sending each generator
eα (α ∈ ∆̃) to −fα is given by

ω(tix) = t−iω̊(x) (i ∈ Z, x ∈ g)

where ω̊ is the Cartan involution of g. As a consequence, ωt = t−1ω. Also, ω ◦ θ̃ ◦ ω(eα) =
ω ◦ θ̃(−fα) = −ω(fθ(α)) = eθ(α) = θ̃(eα) and the same computation gives ω ◦ θ̃◦ω(fα) = θ̃(fα)

so ωθ̃ω = θ̃. Then conjugating t−1θ̃t = λθ̃ by the involution ω yields tθ̃t−1 = λθ̃. It follows
from these equalities that λ2 = 1. Hence λ ∈ {±1} with λ = 1 if m is odd.

Finally, θ̃ permutes the generators of ñ: (eα)α∈∆̃. Hence θ̃ stabilizes ñ and θ̃(tñ) = ±tñ =
tñ

Remark 3. We also checked in several cases, including the cyclic automorphism in type A,
that λ = 1. In such cases, θ̃ then also stabilizes (t− ϵ)ñ for any ϵ ∈ C.

2.3. Realization of gϵ+

The Lie algebras b̃ and ñ decompose as

b̃ = C[t]b⊕ tC[t]n−,
ñ = C[t]n⊕ tC[t]b−.

Moreover, (t− ϵ)ñ is an ideal of b̃, and b̃/((t− ϵ)ñ) is a Lie algebra.

Theorem 4. Let ϵ ∈ C. The Lie algebras gϵ+ and b̃/(t − ϵ)ñ are isomorphic. Similarly, gϵ

is isomorphic to b̃/(t− ϵ)b̃.

Proof. From Section 2.1, we have g1+ = b ⊕ b− as vector spaces. Elements of g1+ will be
written as couples with respect to this decomposition.

Let ι1g : g → g1+ be (ι1)|g×{0} where ι1 is as in (4). Set g̃1+ := C[t±1]⊗ g1+ and extend ι1g to

an injective C[t±1]-linear map g̃ → g̃1+. Consider the subspace w := C[t]b⊕ tC[t]b− that is a

Lie subalgebra of g̃1+. If ϵ ̸= 0, the Inönü-Wigner contraction (5) on g1+ with respect to the
decomposition b⊕ b− gives rise to gϵ+ (ϵ ∈ C). We easily deduce that the linear map

gϵ+ −→ w/(t− ϵ)w
(x, y) 7−→ x+ ty + (t− ϵ)w for any x ∈ b and y ∈ b−,

(11)

is a Lie algebra isomorphism. For ϵ = 0, it is still a linear isomorphism and, by continuity,
a Lie algebra homomorphism.

Set b−0 := ι1g(b
−) = {(h, h)|h ∈ h} ⊕ n−. Observe that tb−0 is contained in w. Indeed, for

any h ∈ h, the element t(h, h) = t(h, 0) + t(0, h) belongs to C[t]b ⊕ tC[t]b−. In particular,
one gets a linear map induced by the inclusions of b and tb−0 in w:

b⊕ tb−0 −→w.
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One can easily check that it induces a linear isomorphism b ⊕ tb−0 −→w/(t − ϵ)w. Setting
b̃w := ⟨b⊕ tb−0 ⟩Lie, the Lie subalgebra of w generated by b⊕ tb−0 , we thus get a Lie algebra
isomorphism.

b̃w/((t− ϵ)w ∩ b̃w)−→w/(t− ϵ)w. (12)

Since, b = {(h, 0)|h ∈ h} ⊕ ι1g(n) and ⟨ι1g(n)⊕ ι1g(tb
−)⟩Lie = ι1g(⟨n⊕ tb−⟩Lie) = ι1g(ñ), we have

b̃w = {(h, 0)|h ∈ h} ⊕ ι1g(ñ)
∼= ι1g(b̃)

∼= b̃, (13)

the middle Lie algebra isomorphism being the identity on ι1g(ñ) and sending (h, 0) to 1
2
(h, h)

for each h ∈ h. Moreover, (t − ϵ)w ∩ b̃w = (t − ϵ)ι1g(ñ). Indeed, (t − ϵ)ι1g(ñ) is contained in
(t− ϵ)w ∩ b̃w, and b⊕ tb−0 is complementary to (t− ϵ)ι1g(ñ) in b̃w.

We �nally get the desired Lie isomorphism

b̃/(t− ϵ)ñ
(13)∼= b̃w/(t− ϵ)ι1g(ñ)

(12)∼= w/(t− ϵ)w
(11)∼= gϵ+

In addition, we can make explicit the isomorphism of Theorem 4:

γϵ : gϵ+
∼=−→ b̃/(t− ϵ)ñ

(x, 0) 7−→ x if x ∈ n
(0, y) 7−→ ty if y ∈ n−

(a, b) 7−→ (a− ϵb) + 2tb if a, b ∈ h

and its inverse map is induced by

θ : b̃ −→ V
Px 7−→ P (ϵ)x if x ∈ n
tRy 7−→ R(ϵ)y if y ∈ n−

Qh 7−→ (Q(ϵ)+Q(0)
2

h, Q(ϵ)−Q(0)
2ϵ

h) if h ∈ h (ϵ ̸= 0)

(Q(0)h, 1
2
Q′(0)h) if h ∈ h (ϵ = 0)

Note that, in order to prove Theorem 4, we could alternatively have checked directly that
θ is a surjective Lie algebra homomorphism from b̃ onto gϵ+ with kernel (t− ϵ)ñ.

3. Some subgroups of Aut(Ib)

3.1. The roots of Ib

From Sections 2.1 and 2.3, we can interpret the Lie algebra Ib in the Kac-Moody world
via the isomorphism

Ib −→ b̃/tñ
(x, y) 7−→ x+ ty

(
x ∈ b,

y ∈ b− ∼= g/n
κ∼= b∗

)
From now on, this identi�cation will be made systematically. In particular, we write Ib =
b⊕ tb−. We �rst describe some basic properties of Ib in this language.
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Lemma 5. 1. The subalgebra c := h ⊕ th is a Cartan subalgebra of Ib. Namely, c is
abelian and equal to its normalizer.

2. Under the action of c, Ib decomposes as

Ib = c⊕
⊕
α∈Φ+

gα ⊕
⊕
α∈Φ−

tgα.

For α ∈ Φ+, c acts on gα with the weight (α, 0) ∈ h∗ × th∗. For α ∈ Φ−, c acts on tgα
with the weight (α, 0) ∈ h∗ × th∗. Here, we identi�ed c∗ with h∗ × th∗ in a natural way.

3. The set of ad-nilpotent elements of Ib is ñ/tñ = n⊕ tb−.

4. The center of Ib is z(Ib) = th.

5. The derived subalgebra of Ib is [Ib; Ib] = ñ/tñ.

Proof. 1-2) The fact that c is abelian and the decomposition in h-eigenspaces are clear from
the de�nition of g̃. The action of th is zero since it sends ñ to tñ that vanishes itself in Ib.
The decomposition of Ib in weight spaces under the action of c follows. Then this decom-
position also implies that c is its own normalizer in Ib.
3) The elements of ñ/tñ are clearly ad-nilpotent. From 2), an element with nonzero compo-
nent in h is not ad-nilpotent.
4) Since th acts as 0 on ñ/tñ and on h, we have th ⊂ z(Ib). The decomposition in weight
spaces implies the converse inclusion.
5) The inclusion [Ib, Ib] ⊂ ñ/tñ is clear. On the other hand we deduce from the weight space
decomposition that the subspaces (g̃α)α∈∆̃ belong to [Ib, Ib]. Since they generate ñ in g̃, the
result follows.

It follows from Lemma 5 and Theorem 4 that Ib ∼= Ib/th ∼= g0+/z(g
0
+)

∼= g0. Then it is
straightforward from Lemma 5 and its proof that

� h is a Cartan subalgebra of Ib.

� The non-zero h-weights (resp. weight spaces) on Ib coincide with the non-zero c-weights
(resp. weight space) on Ib via projection. In particular Φ(Ib) ∼= Φ(Ib) ∼= Φ.

� [Ib, Ib] = ñ/tb̃.

From Lemma 5 (2), the set Φ(Ib) of nonzero weights of c acting on Ib identi�es with Φ.
It is also useful to embed Φ(Ib) in Φ̃ by

φ : Φ(Ib) −→ Φ̃
α ∈ Φ+ 7−→ α
α ∈ Φ− 7−→ δ + α

Indeed, the weight space (Ib)α identi�es with g̃φ(α), for any α ∈ Φ(Ib). In particular, for
α, β ∈ Φ̃ ∪ {0}, we have [Ibφ−1(α), Ibφ−1(β)] ⊂ Ibφ−1(α+β) with equality when α, β, α + β /∈
{0, δ}. Set also ∆(Ib) = φ−1(∆̃) = ∆ ∪ {α0}.
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Lemma 6. 1. The derived subalgebra of Ib(1) := [Ib, Ib] is

Ib(2) = th⊕
⊕

α∈Φ(Ib)\∆(Ib)

(Ib)α

2. Assume that g is not sl2. For α, β ∈ ∆(Ib) (α ̸= β), the corresponding entry of the
generalized Cartan Matrix of gKM is given by

aα,β = −max{n ∈ N | β + nα ∈ Φ(Ib)}.

Proof. 1) Recall that ñ is generated as a Lie algebra by the (g̃α)α∈∆̃. Thus, for weight
reasons, the (g̃α)α∈Φ̃\∆̃ are root spaces included in [ñ, ñ]. Since ∆̃ is a linearly independent
set, they are in fact the only root spaces not contained in [ñ, ñ]. Taking a quotient, this
yields

⊕
α∈Φ(Ib)\∆(Ib)(Ib)α = Ib(2).

2) Recall that the statement is valid if we replace Φ(Ib) by Φ̃, see Section 2.2. It is thus
su�cient to show that

β + nα ∈ Φ̃ ⇒ β + nα ∈ Φ(Ib).

When α, β ∈ ∆, the statement is clear since Φ+ ⊂ Φ(Ib).
If β = δ+α0, then β+nα ∈ Φ̃means that α0+nα ∈ Φ. Expressing α0 as a linear combination
of simple roots, one gets only negative coe�cients. Since g is not sl2, some of them remain
negative in the expression of α0 + nα, so this root has to lie in Φ−. Thus β + nα ∈ Φ(Ib).
If α = δ + α0, then β + nα ∈ Φ̃ means that β + nα0 ∈ Φ. For height reasons, we must have
n ∈ {0, 1}. Then, β + nα ∈ Φ(Ib).

Remark 7. One can observe that the �rst assertion of Lemma 6 is similar to

[n, n] =
⊕

α∈Φ+\∆

bα.

3.2. The adjoint subgroup of Aut(Ib)

Let G be the adjoint group with Lie algebra g. Let T and B be the connected subgroups
of G with Lie algebras h and b. Consider now b− ∼= g/n equipped with the addition as an
abelian algebraic group. The adjoint action of B on g stabilizes n and induces a linear action
on b− ∼= g/n by group isomorphisms. We can construct the semidirect product:

IB := B ⋉ b−.

By construction the Lie algebra of IB identi�es with Ib. The adjoint action of IB on Ib is
given by

IB × Ib −→ Ib
((b, f), x+ ty) 7−→ b · x+ tb · (y + [f, x] + n) for b ∈ B, x ∈ b and f, y ∈ b−,

(14)

where y + [f, x] + n is viewed as an element of g/n ∼= b− and where · denotes the B-action
on b and on b−. It induces a group homomorphism

Ad : IB−→Aut(Ib)

with kernel Z(IB) ∼= (1, h). In particular, one gets:

12



Lemma 8. The image Ad(IB) is isomorphic to B ⋉ g/b.

Note also that Ad(IB) = H ⋉ (N ⋉ g/b) where N and H are the connected subgroups
of B with respective Lie algebras n and h. Since n+ tb− is the set of ad-nilpotent elements
of Ib, we get the following result from (14).

Lemma 9. 1. The group of elementary automorphisms1 Aute(Ib) = exp ad(n+ tb−) co-
incides with N ⋉ g/b.

2. Ad(IB) = exp ad(Ib)

3.3. A unipotent subgroup of Aut(Ib)

Let a be a Lie algebra. We consider the derived subalgebra a(1) := [a, a], the center
z := z(a) and the quotient Lie algebra ā := a/z.

Any linear map u ∈ Hom(a/a(1), z), de�nes a linear map ū :

{
a −→ a
X 7−→ X + u(X + a(1))

.

Since u takes values in z and vanishes on a(1), we have

[ū(X), ū(Y )] = [X + u(X), Y + u(Y )] = [X, Y ] = [X, Y ] + u([X, Y ]) = ū([X, Y ]).

In other words, ū is a morphism of Lie algebras.
On the other hand, any θ ∈ Aut(a) stabilizes the center of a, and hence it induces an

automorphism of ā. This yields a natural group homomorphism

R : Aut(a) → Aut(ā). (15)

Lemma 10. Assume that z(a) ⊂ a(1). With the above notations, we have an exact sequence
of groups

0 −→ Hom(a/a(1), z) −→ Aut(a)
R−→ Aut(ā)

u 7−→ ū

where Hom(a/a(1), z) is seen as the additive vector group.

We denote
U := {ū | u ∈ Hom(Ib/Ib(1), z(Ib))}. (16)

This lemma, together with Lemma 5, implies the following results

Corollary 11. 1. (U, ◦) is a normal subgroup of Aut(Ib) of dimension (dim h)2

2. R(Aut(Ib)) = Aut(Ib)/U ⊂ Aut(Ib).

We will see in Lemma18 that the last inclusion is actually an equality (i.e. the sequence
of Lemma 10 is a short exact sequence for a = Ib)

1Recall that the group of elementary automorphisms of a Lie algebra a is the group generated by the
exp(adn) for n ∈ a ad-nilpotent, cf. [12, 19.1.4]
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Proof of Lemma 10. We have

(ū ◦ v̄)(X) = (X + v(X)) + u(X + v(X)) = X + u(X) + v(X) = u+ v(X)

where the middle equality is due to v(X) ∈ z ⊂ a(1) ⊂ Ker(u). So the map u 7→ ū is a semi-
group homomorphism from (Hom(a/a(1), z),+) to (End(a), ◦). Since (Hom(a/a(1)], z),+) is
actually a group, its image is contained in Aut(a).

It is clear that the map u 7→ ū is injective and, since u takes values in z, that R(ū) = Idā.
In order to prove exactness of the sequence at Aut(a), there remains to prove the implication

∀θ ∈ Aut(a), R(θ) = Idā ⇒ ((θ − Id)(a) ⊂ z) and ((θ − Id)|a(1) = 0)

The �rst property is immediate. The second one follows from the fact that, for such a θ, we
have θ([X, Y ]) ∈ [X + z, Y + z] = [X, Y ].

3.4. The loop subgroup

Lemma 12. The following map is an injective group homomorphism

C∗ −→ Aut(Ib)

τ 7−→

 δτ : Ib −→ Ib
x 7−→ x if x ∈ b
ty 7−→ τty if y ∈ b−

 .

We denote by D ⊂ Aut(Ib) the image of this map.

Proof. It is a straightforward check on b⋉ tb− that the δτ are automorphisms of Ib.

Remark 13. The map δτ corresponds to the change of variable t 7→ τt in the C[t]-Lie
algebra b̃/tñ. Moreover, the Lie algebra of D acts on Ib like Cd where d is the derivation
involved in the de�nition of gKM .

3.5. Automorphisms stabilizing the Cartan subalgebra

For any α ∈ ∆(Ib), �x generators eα of g̃, α ∈ ∆̃ giving rise to elements Xα ∈ Ibα in the
corresponding root space (Ib)α. Set

Γ :=

{
θ ∈ Aut(Ib)

∣∣∣∣ θ(h) ⊂ h
θ({Xα : α ∈ ∆(Ib)}) = {Xα : α ∈ ∆(Ib)}

}
.

Note that, since c is the sum of h with z(Ib) and since the center is characteristic, the
elements of Γ also stabilize c.

Proposition 14. The group Γ is isomorphic to the automorphism group of the a�ne Dynkin
diagram of g.
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Proof. By construction, Γ induces an action on ∆(Ib). By Lemma 6 (2), we have for g ∈ Γ
and α, β ∈ ∆(Ib):

aα,β = −max{n|(adXα)
n(Xβ) ̸= 0}

= −max{n|g((adXα)
n(Xβ)) ̸= 0}

= −max{n|(adXg(α))
n(Xg(β)) ̸= 0} = ag(α),g(β).

Hence g actually induces an automorphism of the extended Dynkin diagram2 and we thus
obtain a group homomorphism

Θ : Γ → Aut(D̃g).

We claim that Θ is surjective. Indeed, �x an automorphism θ of the group D̃g. As it
was mentioned in Section 2.2, there exists θ̃ ∈ Aut(g̃) which stabilizes both h and b̃ and

which permutes the generators {eα : α ∈ ∆̃} and thus ∆̃
φ∼= ∆(Ib) as θ does. By Lemma 2,

θ̃ stabilizes tñ, so induces the desired element of Aut(b̃/tñ).
We now prove that Θ is injective. Let θ in its kernel. By the de�nition of the group Γ, θ

stabilizes h. Since the restrictions of the elements of ∆(Ib) span h∗, the restriction of θ to h
has to be the identity. In particular, θ acts trivially on Φ(Ib) and stabilizes each root space
(Ib)α for α ∈ Φ(Ib). But θ stabilizes the set {Xα : α ∈ ∆(Ib)}. Hence θ acts trivially on
each g̃α for α ∈ ∆(Ib). Since ñ is generated by the (g̃α)α∈∆(Ib), the restriction of θ to ñ/tñ
is the identity map. Finally, θ is trivial and Θ is injective.

Remark 15. 1. [1, Theorem 2] is the construction of an explicit order n automorphism
of glϵn+. We can also interpret this automorphism in terms of the isomorphism glϵn+

∼=
b̃/(t − ϵ)ñ of Theorem 4. Indeed, let θ be the cyclic automorphism of the extended
Dynkin diagram in type Aℓ and let θ̃ be the automorphism of g associated to θ as in
Section 2.2. By Lemma 2 and the subsequent remark, θ̃ induces an automorphism of
b̃/(t − ϵ)ñ. Moreover, it is easily checked that the action on layer 1 in [1] is a cyclic
permutation of the generators (eα)α∈∆̃.

2. Consider the trivial vector bundle V := V ×A1 over A1 = Spec(C[ϵ]). The Lie bracket
[ , ]ϵ endows V with a structure of a Lie algebra bundle meaning that [ , ]ϵ can be seen
as a section of the vector bundle

∧2 V∗ ⊗ V satisfying the Jaccobi identity. Consider
the group Aut(V , [ , ]ϵ) consisting of automorphisms of the vector bundle V respecting
the Lie bracket pointwise. Let θ ∈ Aut(D̃) and assume that the θ̃ ∈ Aut(g̃) is C[t]-
linear (i.e. λ = 1 in Lemma 2). Then it is easy to check that θ̃ induces an element
of Aut(V , [ , ]ϵ). In other words, θ lifts to an A1-family of automorphisms over the
A1-family of Lie algebras V .

4. Description of Aut(Ib)

In this section, we describe the structure of

Aut(Ib) = {g ∈ GL(Ib) : ∀X, Y ∈ Ib g([X, Y ]) = [g(X), g(Y )]}

2If g is sl2, Lemma 6 (2) does not apply. However, any permutation of ∆̃ is an automorphism of the
extended Dynkin diagram in this case.
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in terms of the subgroups U ∼= Mr(C), Ad(IB) ∼= B ⋉ g/b, D ∼= C∗ and Γ ∼= Aut(D̃g)
introduced in Section 3.

Observe that Aut(Ib) is a Zariski closed subgroup of the linear group GL(Ib).

Theorem 16. We have the following decompositions

Aut(Ib) = Γ⋉ (D ⋉ (Ad(IB)× U)),

Aut(Ib) = Γ⋉ (D ⋉ (Ad(IB)).

In particular, the neutral component is Aut(Ib)◦ = D⋉ (Ad(IB)×U) and Γ can be seen as
the component group of Aut(Ib).

The result is a consequence of the lemmas provided below. Indeed, by Lemma 18, the
four subgroups generate Aut(Ib). By Corollary 11(1) and Lemma 17 below, the subgroup
generated by U and Ad(IB) is a direct product U ×Ad(IB). Then the structure of Aut(Ib)
follows from Lemma 19. That of Aut(Ib) follows the same lines, using Corollary 11(2). Note
that we have identi�ed Γ, Ad(IB) and D with their image under R, via Lemma 10.

Since D, Ad(IB) and U are connected and Γ is discrete, Aut(Ib) =
⊔

g∈Γ gDAd(IB)U
is a �nite disjoint union of irreducible subsets of the same dimension. They are thus the
irreducible components of Aut(Ib) and the remaining statements of Theorem 16 follow.

Lemma 17. The subgroups U and Ad(IB) are normal in Aut(Ib). Moreover, U∩Ad(IB) =
{Id}.

Proof. Recall that Ad(IB) is generated by the exponentials of ad(x) with x ∈ Ib. Then for
any θ ∈ Aut(Ib),

θAd(IB)θ−1 = θ exp(Ib)θ−1 = exp(θ(Ib)) = exp(Ib) = Ad(IB).

Let (b, f) ∈ IB and h ∈ h. Then Ad(b, f)(h) = b · h + t b · ([f, h] + n). Assuming that
Ad(b, f) = ū ∈ U , we have Ad(b, f)(h) ⊂ h + z so Ad(b)(h) ⊂ h, that is b belongs to the
normalizer of h in B, which turns to be T . In particular, b · [f, h] ⊂ n− and Ad(b, f)(h) ⊂
h+ (n+ tn−). Hence u = 0 and �nally Ad(IB) ∩ U = {Id}.

Lemma 18. We have Aut(Ib) = ΓDAd(IB)U and Aut(Ib) = ΓDAd(IB).

Proof. Let θ ∈ Aut(Ib). Since the two Cartan subalgebras c and θ(c) are Ad-conjugate (see
[2, �3, n◦ 2, th. 1]), there exists θ1 ∈ Ad(IB)θ which stabilizes c.

Then θ1(h) is complementary to the center th = θ1(th) in c. Thus, there exists θ2 ∈ Uθ1
such that θ2 stabilizes h.

Since θ2 stabilizes c, it acts on Φ(Ib). Moreover, Ib(1) = [Ib, Ib] and Ib(2) = [Ib(1), Ib(1)]
are characteristic and stabilized by θ2. So, Lemma 6 implies that θ2 stabilizes Φ(Ib) \∆(Ib)
and hence ∆(Ib). Arguing as in the proof of Proposition 14, we show that the induced
permutation is actually an automorphism of the extended Dynkin diagram. Thus there
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exists θ3 ∈ Γθ2 with the additional property that the induced permutation on ∆(Ib) and
thus on Φ(Ib) are trivial. Then θ3 acts on each (Ib)α for α ∈ ∆(Ib).

Since ∆ is a basis of h∗, one can �nd h ∈ H ⊂ B ⊂ IB such that Ad(h) ◦ θ3 acts trivially
on each (Ib)α for α ∈ ∆. Moreover, D acts trivially on these roots spaces and with weight
1 on (Ib)α0 . This yields θ4 ∈ DAd(H)ΓUAd(IB)θ which acts trivially on h and on each
(Ib)α, α ∈ ∆(Ib).

Recall now that ñ/tñ is generated by the spaces ((Ib)α)α∈∆(Ib). Since θ4 acts trivially on
ñ and on h, it has to be trivial. As a consequence, θ ∈ Ad(IB)UΓAd(H)D = ΓDAd(IB)U ,
the last equality following from Lemma 17 and Corollary 11.

Recalling that Φ(Ib) = Φ(Ib), the same proof applies for Ib instead of Ib, replacing c by
h and skipping step from θ1 to θ2.

Lemma 19. The intersections D∩ (Ad(IB)×U) and Γ∩ (D⋉ (Ad(IB)×U)) are the trivial
group {Id}. Moreover, (D ⋉ (Ad(IB)× U)) is normal in Aut(Ib).

Proof. Let τ ∈ C∗, b ∈ B, f ∈ g/n and u ∈ Hom(Ib/[Ib, Ib], z(Ib)) such that the associated
elements δτ ∈ D, (b, f) ∈ IB and ū ∈ U (see Section 3) satisfy δτ = Ad(b, f) ◦ ū. For x ∈ b,
we have

x = δτ (x) = (Ad(b, f) ◦ ū)(x) = Ad(b, f)(x+ u(x)) = b · x+ (b · u(x) + tb · ([f, x] + n)).

In particular, b · x = x and, whenever x ∈ n, b · [f, x] = 0 in g/n. So b ∈ B centralizes b
and adg f normalizes n. As a consequence, b = 1B, f is 0 in g/b and u = 0. Thus the only
element of D ∩ (Ad(IB)× U) is the trivial one.

Since [Ib, Ib] is characteristic in Ib, we have a natural group morphism p : Aut(Ib) →
Aut(Ib/[Ib, Ib]). From the description of [Ib, Ib] in Lemma 5, it is straightforward that D,
Ad(IB) and U are included in Ker(p) while p|Γ is injective. From Lemma 18, we then deduce
that D ⋉ (Ad(IB)× U) = Ker(p) and the desired properties follow.
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