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1. Introduction

Let G be a complex semisimple algebraic group, and let g be its Lie algebra.
Let G0 be a real form of G , that is, a real algebraic group such that G0 ×Spec(R)
Spec(C) ≃ G as complex algebraic groups. Given a complex quasi-projective
G-variety X , we say that a real G0 -variety X0 is an (R, G0)-form of X if
X0 ×Spec(R) Spec(C) ≃ X as complex G-varieties. Let us note that certain G-
varieties admit no (R, G0)-form. On the other hand, when an (R, G0)-form
exists, there may be several (and even uncountably many) which are pairwise
non-isomorphic.

The goal of this article is to address the following basic question.
Question 1. What are the (R, G0)-forms of the nilpotent orbit closures in g and
of their normalizations?

To give a real form G0 of G is equivalent to giving a real group structure σ
on G , that is, an antiregular involution on G compatible with the group structure,
and giving an (R, G0)-form of X is equivalent to giving a (G, σ)-equivariant real
structure µ on X , that is, an antiregular involution on X such that

∀g ∈ G, ∀x ∈ X, µ(g · x) = σ(g) · µ(x). (⋆)

Moreover, two (R, G0)-forms are isomorphic if and only if the two corresponding
(G, σ)-equivariant real structures are equivalent, i.e. conjugate by a G-equivariant
automorphism of X . (See Sections 2.1 and 2.2 for more details on these notions.)

With this terminology, Question 1 can be rephrased as follows.
Question 2. What are the (G, σ)-equivariant real structures on the nilpotent orbit
closures in g and on their normalizations?

If X is an almost homogeneous G-variety, that is, if X contains a dense
open G-orbit U , then the condition (⋆) implies that µ(U) = U , and thus µ|U
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is a (G, σ)-equivariant real structure on U . Therefore, a natural strategy to
determine the equivariant real structures on nilpotent orbit closures and their
normalizations is in two steps. First, we determine the equivariant real structures
on nilpotent orbits. Second, we determine which ones extend to their closures and
their normalizations.

Denoting by dσe : g → g the differential of σ : G → G at the identity
element, we check (see Example 2.8) that dσe is a (G, σ)-equivariant real structure
on g , viewed as a G-variety for the adjoint action. In particular, if O is a nilpotent
orbit in g , then dσe induces a (G, σ)-equivariant real structure on O if and only if
dσe(O) = O . However, there are also equivariant real structures on nilpotent orbits
that are not obtained by differentiating a real group structure on G (Example
1.1), nor even by restricting an equivariant real structure from the Lie algebra g
(Example 1.2).

Example 1.1. Let g be a semisimple Lie algebra, and assume that dσe(O) =
O . Let θ ∈ R . Then µθ : O → O, v 7→ eiθdσe(v) is a (G, σ)-equivariant real
structure on O which is not obtained by differentiating a real group structure on
G when θ /∈ 2πZ (because, in this case, µθ does not preserve the Lie bracket).

Example 1.2. Let G = SL3(C) with σ(g) = g for all g ∈ G (here g denotes the
complex conjugate of g ), and let Oreg be the regular nilpotent orbit in sl3 (i.e. the
unique nilpotent orbit whose closure contains all the other nilpotent orbits). Then
the map µ defined by

Oreg → Oreg, g ·

0 1 0
0 0 1
0 0 0

 7→

σ(g)

1 i 0
0 1 0
0 0 1

 ·

0 1 0
0 0 1
0 0 0

 = σ(g) ·

0 1 i
0 0 1
0 0 0


is a (G, σ)-equivariant real structure on Oreg that does not extend to a (G, σ)-
equivariant real structure on sl3 (see Section 6 for a proof of this claim).

The following theorem provides a complete answer to the second part
of Question 2. More precisely, we determine the equivariant structures on the
nilpotent orbits and the normalizations of their closures. In the cases where
the closure is itself not normal, it remains an open question to determine all the
equivariant real structures. This will be discussed in Section 5.
Main Theorem. Let G be a complex semisimple algebraic group endowed with a
real group structure σ . Let g be the Lie algebra of G, let O be a nilpotent orbit
in g, let O be the closure of O in g, and let Õ be the normalization of O . Then
the following are equivalent:

(a) O is dσe -stable (i.e. dσe(O) = O);
(b) O admits a (G, σ)-equivariant real structure;

(c) Õ admits a (G, σ)-equivariant real structure; and
(d) σD(w(O)) = w(O),

where
• σD is the Dynkin diagram automorphism of Dyn(G) induced by σ (see Definition
2.5); and

• w(O) is the weighted Dynkin diagram associated to O (see [10, Section 3.5]).
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Moreover, if these equivalent assertions hold, then all (G, σ)-equivariant real structures

on O , resp. on Õ , are equivalent.

The Main Theorem will be proved in several steps as follows:
• (a) ⇔ (b) is Proposition 3.1.
• (b) ⇔ (c) is the first part of Proposition 5.2 (see also Section 2.2.2).
• (a) ⇔ (d) is Corollary 3.3.
• If the equivalent conditions (a)-(d) of the Main Theorem hold, then the fact
that all (G, σ)-equivariant real structures on O are equivalent is Theorem 4.2,

and the fact that all (G, σ)-equivariant real structures on Õ are equivalent is
the second part of Proposition 5.2.

Let us make a few comments related to Question 2 and our Main Theorem:

(1) In Section 3, we provide the list of nilpotent orbits that admit a (G, σ)-equiva-
riant real structure. It turns out that, except for a few cases in type D2n (with
n ≥ 2), every nilpotent orbit O in g admits a (G, σ)-equivariant real structure
when g is simple.

(2) For every nilpotent orbit O in a complex simple Lie algebra g , we have
Odσe = O ∩ gdσe , which is a real manifold (possibly empty) whose G0(R)-
orbits, usually called real nilpotent orbits, are classified (see [10, Section 9]).
Let us mention that a study of some properties of the complexification process
for these real nilpotent orbits can be found in [12].

(3) When O is non-normal, we do not know whether every (G, σ)-equivariant
real structure on O extends to O ; see Example 5.3. In particular, we did not
manage to provide a complete answer to the first part of Question 2. A brief
review on what is known about the (non-)normality of nilpotent orbit closures
in semisimple Lie algebras can be found in Section 5.

(4) There are examples of almost homogeneous varieties for which equivalent real
structures on the open orbit extend to inequivalent real structures on the whole
variety; see e.g. the case of SL2(C)-threefolds studied in [23, Section 3].

Notation. In this article we work over the field of real numbers R and over the
field of complex numbers C . We denote by

Γ := Gal(C/R) = {1, γ}

the Galois group of the field extension C/R .

We will always denote by G a complex algebraic group, by Dyn(G) its
Dynkin diagram (when G is semisimple), and by G0 a real algebraic group such
that G0×Spec(R)Spec(C) ≃ G . When X is a complex algebraic variety, the group of
automorphisms of X over Spec(C) is denoted by AutC(X). Moreover, when X is
equipped with a regular G-action, the subgroup of G-equivariant automorphisms
is denoted by AutGC(X). We denote by Gm,C the multiplicative group over C .

The reader is referred to [10] for the general background on Lie theory and
nilpotent orbits in semisimple Lie algebras.

Acknowledgment. We are grateful to the anonymous referee for the careful
reading of the former version of this paper and for his/her helpful comments.
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2. Preliminaries

2.1. Real group structures.

2.1.1. We start by recalling the notions of real forms and real group structures
for a given complex algebraic group G , and how these two notions are related.
Definition 2.1.

(i) A real form of G is a pair (G0,Θ) with G0 a real algebraic group and
Θ: G → G0 ×Spec(R) Spec(C) an isomorphism of complex algebraic groups.
(Most of the time, one drops the isomorphism Θ and simply write that G0 is
a form of G .)

(ii) A real group structure σ on G is a scheme involution on G such that the
diagram

G
σ //

��

G

��
Spec(C) Spec(z 7→z) // Spec(C)

commutes and

ιG ◦ σ = σ ◦ ιG and mG ◦ (σ × σ) = σ ◦mG,

where ιG : G → G is the inverse morphism and mG : G × G → G is the
multiplication morphism.

(iii) Two real group structures σ1 and σ2 on G are equivalent if there exists a
complex algebraic group automorphism ψ ∈ Autgr(G) such that

σ2 = ψ ◦ σ1 ◦ ψ−1.

There is a correspondence between real group structures on G and real
forms of G given as follows (see [1, Section 2.12] for a general statement of Galois
descent, and [13, Section 1.4] for the particular case of algebraic groups).
• To a real group structure σ on G , one associates the real algebraic group
G0 := G/⟨σ⟩ , where γ acts on G through σ , and the isomorphism Θ is given
by (q, f), where q : G→ G0 is the quotient morphism and f : G→ Spec(C) is
the structure morphism.

• To a real form (G0,Θ) of G , one associates the real group structure σ that
makes the following diagram commutes:

G
Θ //

σ

��

G0 ×Spec(R) Spec(C)

Id×(λ 7→λ)
��

G
Θ // G0 ×Spec(R) Spec(C)
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Moreover, two real forms of G are isomorphic (as real algebraic groups) if and
only if the corresponding real group structures are equivalent.

2.1.2. In this article, we are mostly interested in complex semisimple algebraic
groups; nevertheless, the case of complex tori will play a role in the proof of
Theorem 4.2.

Lemma 2.2. (Real group structures on complex tori; see [24, Lemma 1.5] and
[9, Theorem 2].) Let T ≃ Gn

m,C be an n-dimensional complex torus with n ≥ 1.

(i) If n = 1, then T has exactly two inequivalent real group structures, defined

by σ0 : t 7→ t and σ1 : t 7→ t
−1

.
(ii) If n = 2, then σ2 : (t1, t2) 7→ (t2, t1) defines a real group structure on T .
(iii) If n ≥ 2, then every real group structure on T is equivalent to exactly one

real group structure of the form σ×n0
0 ×σ×n1

1 ×σ×n2
2 , where n = n0+n1+2n2 .

2.1.3. Let G be a complex semisimple algebraic group. There exists a central
isogeny G̃→ G , where G̃ is a simply-connected semisimple algebraic group. Then
G̃ is isomorphic to a product of simply-connected simple algebraic groups (see [11,
Exercise 1.6.13 and Section 6.4]). Moreover, every real group structure σ on G

lifts uniquely to a real group structure σ̃ on G̃ (this follows for instance from [25,
Section 3.4, Theorem]).

The next result reduces the classification of real group structures on simply-
connected semisimple algebraic groups to the classification of real group structures
on simply-connected simple algebraic groups.

Lemma 2.3. ([24, Lemma 1.7]) Let σ be a real group structure on a complex

simply-connected semisimple algebraic group G̃ ≃
∏

i∈I Gi , where the Gi are the

simple factors of G̃. Then, for a given i ∈ I , we have the following possibilities:

(i) σ(Gi) = Gi and σ|Gi
is a real group structure on Gi ; or

(ii) there exists j ̸= i such that σ(Gi) = Gj , then Gi ≃ Gj and σ|Gi×Gj
is

equivalent to (g1, g2) 7→ (σ0(g2), σ0(g1)) for an arbitrary real group structure
σ0 on Gi ≃ Gj .

Real group structures on complex simply-connected simple algebraic groups
are well-known (see e.g. [14, Section 1.7.2] or [17, Section VI.10]). Therefore, all
real group structures on complex (simply-connected) semisimple algebraic groups
can be determined from Lemma 2.3.

2.1.4. Let G be a complex semisimple algebraic group endowed with a real
group structure σ . In order to describe which nilpotent orbits in g admit a
(G, σ)-equivariant real structure (in Section 3), we need to recall the notions of
split real group structures, as well as the notions of inner and outer twists.
Definition 2.4.

(i) If there exists a Borel subgroup B ⊆ G such that σ(B) = B , then σ is called
quasi-split. If furthermore B contains a maximal torus T such that σ(T ) = T

and the restriction σ|T is equal to the product σ
× dim(T )
0 (with the notation of

Lemma 2.2), then σ is called split.
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(ii) For c ∈ G , we write

innc : G→ G, g 7→ cgc−1.

We say that innc is an inner automorphism of G . An automorphism of G that
is not inner is called outer. If σ1 and σ2 are two real group structures on G ,
we may write σ2 = φ ◦ σ1 with φ ∈ Autgr(G), and we say that σ2 is an inner
(resp. an outer) twist of σ1 if φ is an inner (resp. an outer) automorphism of
G . Note that the relation of being inner twists is an equivalence relation on
the set of real group structures on G .

According to [11, Proposition 7.2.12], every real group structure on G is
an inner twist of a unique (up to equivalence) quasi-split real group structure on
G . Moreover, in types A1 −B −C −E7 −E8 − F4 −G2 (i.e. when Aut(Dyn(G))
is trivial), any quasi-split real group structure is equivalent to a split one, and in
types An(n ≥ 2)−D−E6 (i.e. when Aut(Dyn(G)) contains exactly one conjugacy
class of elements of order 2), there are exactly two equivalence classes of quasi-
split real group structures; this follows for instance from [11, Propositions 7.2.2
and 7.2.12].

2.1.5. Finally, we recall how the choice of a real group structure σ on a complex
semisimple algebraic group G induces a Γ-action on Dyn(G). We refer to [11,
Remark 7.1.2] or [24, Section A.2] and references therein for details.

Let B ⊆ G be a Borel subgroup, and let T ⊆ B be a maximal torus. (We
say that (T,B) is a Borel pair in G .) Then (T ′, B′) := (σ(T ), σ(B)) is another
Borel pair in G , and so there exists cσ ∈ G (unique up to left multiplication by
an element of T ) such that

cσT
′c−1
σ = T and cσB

′c−1
σ = B.

Let θ := inncσ ◦σ that is an antiregular automorphism of G . Since θ(T ) = T and
θ(B) = B , the automorphism θ induces a lattice automorphism of the character
group X(T ) := Homgr(T,Gm,C) as follows:

∀χ ∈ X(T ), χ 7→ γχ := σ0 ◦ χ ◦ θ−1,

where σ0(t) = t is the complex conjugation on Gm,C . One can check that this
lattice automorphism is of order ≤ 2, that it does not depend on the choice of
cσ , and that it stabilizes the sets of roots R ⊆ X(T ) and of simple roots S ⊆ R
associated with the triple (G,B, T ).
Definition 2.5. By the previous discussion, the choice of σ induces an action
Γ → Aut(Dyn(G)), usually referred as the ⋆-action induced by σ . This action
does not depend on the choice of the Borel pair (T,B) in G . We will denote by
σD ∈ Aut(Dyn(G)) the image of the non-trivial element γ ∈ Γ.

Remark 2.6. It follows from the definition of the ⋆-action that if σ is an inner
twist of σ′ , then the ⋆-actions induced by σ and σ′ coincide. In particular, if σ
is an inner twist of a split real group structure on G , then σD is trivial. On the
other hand, if σ is an outer twist of a split real group structure on G , then it
follows from [11, Section 1.5, second half of p. 41] that σD is non-trivial.



Bulois, Moser-Jauslin and Terpereau 7

2.2. Equivariant real structures. We fix a complex algebraic group G , a real
group structure σ on G , and we denote by G0 = G/⟨σ⟩ the corresponding real
form.

2.2.1. We start by recalling the notions of real forms and equivariant real
structures for complex G-varieties, and how they are related, as we did for complex
algebraic groups in Section 2.1.1.
Definition 2.7. Let X be a complex G-variety.

(i) An (R, G0)-form of X is a pair (X0,Ξ) with X0 a real G0 -variety and
Ξ: X → X0 ×Spec(R) Spec(C) an isomorphism of complex G-varieties. (As
for real forms of complex algebraic groups, one usually drops the isomorphism
Ξ and simply write that X0 is a form of X .)

(ii) A (G, σ)-equivariant real structure on X is an antiregular involution µ on X ,
that is, a scheme involution on X such that the following diagram commutes

X
µ //

��

X

��
Spec(C) Spec(z 7→z) // Spec(C)

and satisfying the condition (⋆) stated in the introduction.
(iii) Two (G, σ)-equivariant real structures µ and µ′ on X are equivalent if there

exists a G-equivariant automorphism φ ∈ AutGC(X) such that µ′ = φ◦µ◦φ−1 .

We now suppose that X is quasi-projective. (Later in this article, we will in
fact restrict to the case where X is quasi-affine.) Under this condition, as for real
group structures (see Section 2.1.1), there is a correspondence between (G, σ)-
equivariant real structures on X and (R, G0)-forms of X (see [3, Section 5]).
Moreover, this correspondence induces a bijection between isomorphism classes
of (R, G0)-forms of X (as real algebraic G0 -varieties) and equivalence classes of
(G, σ)-equivariant real structures on X .

Example 2.8. Considering the Lie algebra g of G as a G-variety for the adjoint
action, we observe that the antilinear Lie algebra involution dσe , obtained by
differentiating σ at the identity element, is also a (G, σ)-equivariant real structure
on g . Indeed, for a fixed g ∈ G , if we denote inng : G → G, h 7→ ghg−1 , then we
have

innσ(g) ◦ σ = σ ◦ inng,

and the condition (⋆) follows from computing the differential at the identity
element on both sides of this equality.

2.2.2. The condition (⋆) implies that an equivariant real structure µ on a G-
variety X maps G-orbits to G-orbits, and so a given G-orbit is either fixed by µ
or exchanged with another G-orbit. In particular, if X has a dense open orbit U ,
then U must be fixed by µ , and so µ|U is an equivariant real structure on U . Let
us note that a given equivariant real structure µ0 on U need not extend to X , but
if µ0 extends to X , then this extension is unique by [15, Chapter I, Lemma 4.1].

2.2.3. In the case of homogeneous spaces, we have the following criterion for the
existence of an equivariant real structure.



8 Bulois, Moser-Jauslin and Terpereau

Lemma 2.9. ([24, Lemma 2.4]) Let X = G/H be a homogeneous space. Then
X admits a (G, σ)-equivariant real structure if and only if there exists g0 ∈ G
such that the following two conditions hold:

(i) (G, σ)-compatibility condition: σ(H) = g0Hg
−1
0

(ii) involution condition: σ(g0)g0 ∈ H

in which case one real structure is given by

∀k ∈ G, µ(kH) = σ(k)g0H.

2.2.4. The classical way to determine the number of equivalence classes for real
structures, assuming that such a structure exists, is via Galois cohomology (see
[26] for a general reference on Galois cohomology).

Lemma 2.10. ([24, Lemma 2.11], see also [33, Section 8])
Let X be a G-variety endowed with a (G, σ)-equivariant real structure µ0 . Let the
Galois group Γ act on AutGC(X) by conjugation by µ0 , and denote by H1(Γ,AutGC(X))
the corresponding first Galois cohomology set. Then the map

H1(Γ,AutGC (X)) → {equivalence classes of (G, σ)-equivariant real structures on X}
φ 7→ φ ◦ µ0

is a bijection that sends the identity element to the equivalence class of µ0 .

2.3. Nilpotent orbits in semisimple Lie algebras. In this section we recall
some classical facts concerning nilpotent orbits in semisimple Lie algebras that we
will need to prove the Main Theorem.

Let G be a complex semisimple algebraic group, and let g be its Lie algebra.
We denote by N the nilpotent cone of g , that is, the G-stable closed subset of
g formed by the elements v ∈ g such that adv : g → g, u 7→ [u, v] , is a nilpotent
endomorphism of the C-vector space g . Then the following hold:

(N1) The nilpotent cone N is a finite union of G-orbits (see [10, Corollary 3.2.15]).

(N2) The dimension of a nilpotent orbit is always even (see [10, Corollary 1.4.8]).

(N3) Each nilpotent orbit is stable for the Gm,C -action induced by the scalar
multiplication on g (see the proof in [10, Lemma 4.3.1]).

(N4) To every nilpotent orbit O ⊆ g is associated a unique weighted Dynkin
diagram w(O), that is, a labeling of the nodes of the Dynkin diagram Dyn(G)
with labels in {0, 1, 2} (see [10, Section 3.5]). When g is a complex simple Lie
algebra, a complete classification of the weighted Dynkin diagrams corresponding
to nilpotent orbits can be found in [10, Section 5.3], for the classical cases, and
in [10, Section 8.4], for the exceptional cases.

(N5) If v ∈ N , then (G · v)∩ z(gv) ⊆ g is a dense open subset of z(gv), where gv :=
{u ∈ g | [u, v] = 0} and z(gv) is the center of gv (see [30, Propositions 35.3.3
and 35.3.4]).

(N6) Let v1, v2 ∈ N . Then StabG(v1) and StabG(v2) are conjugate in G if and
only if v1 and v2 belong to the same nilpotent orbit (see [5, Theorem 3.7.1],
using the fact that each nilpotent orbit is a decomposition class).
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(N7) Since the Lie algebra g is semisimple, it is isomorphic to a direct sum of simple
Lie algebras

⊕
i∈I gi on which G acts componentwise through the adjoint

group G/Z(G). Then the nilpotent orbits in g identify with the products∏
i∈I Oi , where each Oi is a nilpotent orbit in gi . The same holds for the

nilpotent orbit closures in g and their normalizations.

3. Existence of real structures on nilpotent orbits

Let G be a complex semisimple algebraic group endowed with a real group
structure σ . Let (T,B) be a Borel pair in G . Let g be the Lie algebra of
G , and let O be a nilpotent orbit in g .

In this section we prove the equivalences (a) ⇔ (b)(Proposition 3.1) and
(a) ⇔ (d) (Corollary 3.3) of the Main Theorem. In particular, the equivalence
(b) ⇔ (d) gives a combinatorial criterion for the existence of an equivariant real
structure on a given nilpotent orbit, and we then use this criterion to determine
which nilpotent orbits admit an equivariant real structure (see Proposition 3.5 and
the discussion before).

Proposition 3.1.

(i) If dσe(O) = O , then (dσe)|O is a (G, σ)-equivariant real structure on O .
(ii) If dσe(O) ̸= O , then O does not admit a (G, σ)-equivariant real structure.

Proof. (i): Follows from Example 2.8.
(ii): Let v ∈ O and v′ := dσe(v) ∈ O′ := dσe(O). Let H := StabG(v) and
H ′ := StabG(v

′). Since dσe is a (G, σ)-equivariant real structure on g , the
condition (⋆) holds for every element in g ; in particular, the condition (⋆) applied to
v implies that σ(H) = H ′ . Let us assume that O admits a (G, σ)-equivariant real
structure. By Lemma 2.9(i), there exists g0 ∈ G such that σ(H) = g0Hg

−1
0 , and

so H and H ′ = σ(H) are conjugate. But, according to (N6), the subgroups H and
H ′ are conjugate if and only if O = O′ . The result follows by contraposition.

Proposition 3.2. Let w(O) be the weighted Dynkin diagram associated to O .
Then

w(dσe(O)) = σD(w(O)),

where σD is the Dynkin diagram automorphism induced by σ (see Definition 2.5).

Proof. We keep the notation of Section 2.1.5. Let t ⊆ g be the Cartan
subalgebra associated to T ⊆ G . Given a nilpotent orbit O ⊆ g , we recall
the construction of the corresponding weighted Dynkin diagram w(O) (see [10,
Section 3.5] for details). There exists an sl2 -triple (x, t, y) with x ∈ O , t ∈ t , and
such that for every simple root α ∈ S , we have dαe(t) ∈ N , where dαe ∈ t∗ is
the differential of the simple root α at the identity element. In fact, for a given
O , there is a unique t ∈ t satisfying this last condition, and one can furthermore
show that dαe(t) ∈ {0, 1, 2} . Then w(O) is defined by associating to each node
α ∈ S of Dyn(G) the label dαe(t) ∈ {0, 1, 2} .

Let us now consider the weighted Dynkin diagram σD(w(O)). By definition
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of σD , it is the weighted Dynkin diagram defined by associating to each node α ∈ S
of Dyn(G) the label

d( γα)e(t) = dαe(dθ
−1
e (t)) ∈ {0, 1, 2}, (A)

where dθ−1
e is the antilinear Lie algebra automorphism obtained by differentiating

θ−1 = σ ◦ innc−1
σ
: G→ G at the identity element. On the other hand, if (x, t, y) is

an sl2 -triple as above, then

(x′, t′, y′) := (dθ−1
e (x), dθ−1

e (t), dθ−1
e (y))

is an sl2 -triple with x′ ∈ dθ−1
e (O) = dσe(c

−1
σ · O) = dσe(O), t′ ∈ t (since

θ(T ) = T ), and such that for every simple root α ∈ S , we have dαe(t
′) ∈ N

by (A). It follows that w(dσe(O)) = σD(w(O)).

The following result is a straightforward consequence of Proposition 3.2
together with (N4).

Corollary 3.3. We have dσe(O) = O if and only if σD(w(O)) = w(O).

We now determine which nilpotent orbits in g admit an equivariant real
structure (i.e. the nilpotent orbits O such that dσe(O) = O). Applying Lemma 2.3,
we reduce to the case where either

(A) g is simple; or
(B) g ≃ l ⊕ l with l = Lie(L) a simple summand, and σ : L × L → L × L is

(g1, g2) 7→ (σ′(g2), σ
′(g1)), where σ

′ is any real group structure on L .

In Case (B), the nilpotent orbits of g stabilized by dσe are the orbits of the
form (O1, dσ

′
e(O1)) with O1 a nilpotent orbit in l . Hence, only these nilpotent

orbits admit a (G, σ)-equivariant real structure.

On the other hand, Case (A) will be handled by Proposition 3.5, but we
first need to recall the partition type classification of nilpotent orbits in type Dn .

Theorem 3.4. ([10, Theorem 5.1.4]) Nilpotent orbits in so2n (type Dn with
n ≥ 4) are parametrized by partitions of 2n in which even parts occur with even
multiplicity, except that “very even” partitions d = [d1, . . . , dr] (those with only
even parts, each having even multiplicity) correspond to two orbits, denoted by OI

d

and OII
d .

Proposition 3.5. Assume that G is simple. Then dσe(O) ̸= O if and only if
one of the following two conditions holds:

(i) G is of type D4 , σ is an outer twist of a split real group structure on G
(i.e. gdσe ≃ so5,3 or so7,1 ), and O belongs to one of the pairs of orbits swapped
by the ⋆-action induced by σ (see Example 3.6 below).

(ii) G is of type D2n with n ≥ 3, σ is an outer twist of a split real group structure
on G (i.e. gdσe ≃ sop,q with p and q odd), and O ∈ {OI

d,OII
d } with d a very

even partition.

Proof.
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• If σ is an inner twist of a split real group structure on G , then the corresponding
Dynkin diagram automorphism σD is trivial (see Remark 2.6). Hence, Corollary
3.3 yields dσe(O) = O in this case.

• In types An (n ≥ 2), D2n+1 (n ≥ 2) and E6 , the weighted Dynkin diagram
w(O) is invariant under the non-trivial Dynkin diagram automorphism; see
[10, Lemma 3.6.5] for the type An , [10, Lemma 5.3.4 and Remark 5.3.6] for the
type D2n+1 , and [10, Section 8.4] for the case E6 . Hence, Corollary 3.3 yields
again dσe(O) = O in this case.

• In type D2n (n ≥ 2), if σ is an outer twist of a split real group structure on
G , then σD is a non-trivial involution of Dyn(G) (see Remark 2.6). In type
D4 , the group Aut(Dyn(G)) ≃ S3 contains three (conjugate) involutions, and
σD can be each of them depending on the choice of σ in its equivalence class.
In type D2n (n ≥ 3), we have Aut(Dyn(G)) = ⟨σD⟩ ≃ Z/2Z . The result
follows then from the description of the weighted Dynkin diagrams given in [10,
Example 5.3.7] in type D4 and in [10, Lemmas 5.3.4 and 5.3.5, Remark 5.3.6]
in type D2n (n ≥ 3).

Example 3.6. A partial order relation is defined on the set of nilpotent orbits
of g by inclusion of closures. In type D4 , the Hasse diagram representing this
partial order is the following (see [10, Section 6.2]).

O[7,1]

O[5,3]

OI
[42]

zz $$
oo // O[5,13]

oo // OII
[42]

O[32,12]

O[3,22,1]

OI
[24]

zz $$
oo // O[3,15]

oo // OII
[24]

O[22,14]

O[18]

Here the dotted arrows indicate which
pairs of orbits can be swapped by the
⋆-action induced by an outer twist of a
split real group structure on G .

4. Uniqueness of real structures on nilpotent orbits

We keep the notation of Section 3. In this section, we prove that all (G, σ)-
equivariant real structures on O are equivalent (Theorem 4.2).

We recall that, if X ≃ G/H is a homogeneous space, then there is an
isomorphism of groups (see [31, Proposition 1.8]) given by

NG(H)/H
∼−→ AutGC(X), nH 7→ (φnH : gH 7→ gn−1H),

where NG(H) denotes the normalizer of H in G .

Let O ≃
∏

i∈I Oi ≃ G/H be a nilpotent orbit in g ≃
⊕

i∈I gi , and let
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Q := NG(H)/H ≃ AutGC(O). The following result, which is essentially due to
Brylinski and Kostant [8], describes the structure of the algebraic group Q .

Theorem 4.1. The linear algebraic group Q is connected and solvable. Furthermore,
the unipotent radical U of Q is of codimension

d = d(O) := Card({i ∈ I, Oi ̸= {0}})

in Q. In particular, we have T := Q/U ≃ Gd
m,C and Q ≃ U ⋊ T.

Proof. Let v ∈ O such that StabG(v) = H . Then Q ≃ Q · v as algebraic
varieties. Also, by [8, Theorem D], we have Q · v = O ∩ z(gv), which is a dense
open subset of z(gv) by (N5). Hence, Q ≃ Q · v is irreducible, and so Q is
connected.

Now the fact that Q is solvable and that its unipotent radical is of codimension
d in Q is precisely the content of [8, Theorem 23 and Remark 23.1]. The last
sentence follows from general results on the structure of connected solvable linear
algebraic groups (see e.g. [2, Section 10.6]).

Theorem 4.2. All (G, σ)-equivariant real structures on O are equivalent.

Proof. If O admits no (G, σ)-equivariant real structure, then there is nothing
to prove. Otherwise, according to Proposition 3.1, µ0 := (dσe)|O is a (G, σ)-
equivariant real structure on O . Thus, conjugation by µ0 yields a Γ-action on the
group AutGC(O) ≃ Q , and according to Lemma 2.10, the first Galois cohomology
set H1(Γ, Q) parametrizes the equivalence classes of (G, σ)-equivariant real structures
on O . Therefore proving the theorem is equivalent to prove that this set is a
singleton.

Let K := Gd
m,C acting on g ≃

⊕
i∈I gi by scalar multiplication on each

simple component gi such that Oi ̸= {0} . By (N3), the torus K acts faithfully
on O , and so there is an inclusion of algebraic groups K ↪→ AutGC(O) ≃ Q . Using
the fact that µ0 = dσe is an antilinear Lie algebra involution that permutes the
gi , we have the following two possibilities (with the notation of Lemma 2.2):
• Assume that Oi ̸= {0} and µ0(gi) = gi . In this case, Γ acts on the corresponding
Gm,C through σ0 . Indeed, denoting φt : gi → gi, v 7→ t · v , we see that

µ0|gi ◦ φt ◦ µ0|gi = φt.

• Assume that Oi,Oj ̸= {0} and µ0(gi ⊕ gj) = gj ⊕ gi . Then gi ⊕ gj ≃ l⊕ l , for
some simple Lie algebra l , and µ0|gi⊕gj identifies with l⊕ l → l⊕ l, (v1, v2) 7→
(ψ(v2), ψ

−1(v1)), where ψ is an antilinear Lie algebra automorphism. In this
case, Γ acts on the corresponding G2

m,C through the real group structure σ2 .
Indeed, denoting φ(t1,t2) : l⊕ l → l⊕ l, (v1, v2) 7→ (t1 · v1, t2 · v2), we see that

µ0|gi⊕gj ◦ φ(t1,t2) ◦ µ0|gi⊕gj = φ(t2,t1).

Therefore, the Γ-action on AutGC(O), given by the conjugation by µ0 , stabilizes
the subgroup K , and the restriction of the Γ-action on AutGC(O) to K = Gd

m,C
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coincides with the Γ-action on K induced by a real group structure equivalent
to σ×n0

0 × σ×n2
2 for some n0, n2 ∈ Z≥0 such that d = n0 + 2n2 . But then [24,

Proposition 1.18] implies that H1(Γ, K) is trivial.

Moreover, the homomorphism Q→ Q, q 7→ γ · q is an antiregular algebraic
group involution, and so the Γ-action on Q stabilizes the unipotent radical U of Q
and induces a Γ-action on the quotient T = Q/U such that the quotient morphism
π : Q → T is then Γ-equivariant. It follows that isomorphism of algebraic groups
π|K : K ≃ T is Γ-equivariant. Consequently, it induces an isomorphism of abelian
groups between H1(Γ, K) and H1(Γ,T), and so H1(Γ,T) is trivial.

Finally, the exact sequence of algebraic groups given by Theorem 4.1,
namely

1 → U → Q→ T → 1,

induces a long exact sequence of pointed sets (see [26, Chp. I, Section 5.5]). In
particular, we have

H1(Γ, U) → H1(Γ, Q) → H1(Γ,T) = {e}.

But H1(Γ, U) is a singleton by [26, Chp. III, Section 2.1, Proposition 6], and so
H1(Γ, Q) is also a singleton, which concludes the proof of the theorem.

5. Extension of real structures to nilpotent orbit closures

We maintain the notation of Section 3. In this section, we prove that every
(G, σ)-equivariant real structure on O extends uniquely to Õ , and that all (G, σ)-

equivariant real structures on Õ are equivalent (Proposition 5.2). We then briefly
review what is known about the (non-)normality of nilpotent orbit closures in
semisimple Lie algebras, and finish this section by considering an example related
to our extension problem (Example 5.3).

Lemma 5.1. Let X be a complex normal affine G-variety, and assume that
there exists a G-stable dense open subset X0 ⊆ X such that codim(X\X0, X) ≥ 2.
Then any G-equivariant automorphism of X0 extends uniquely to a G-equivariant
automorphism of X .

Proof. It is clear that if an automorphism extends from X0 to X , then this
extension is unique by [15, Chapter I, Lemma 4.1].

Since X is normal and codim(X \X0, X) ≥ 2, the map

H0(X,OX) → H0(X0,OX0), f 7→ f|X0

is an isomorphism of C-algebras, and so Spec(H0(X0,OX0)) ≃ Spec(H0(X,OX)) ≃
X . By [29, Tag 01P9], the affinization morphism

X0 → Spec(H0(X0,OX0)) ≃ X

is an open immersion; it coincides with the inclusion morphism X0 ↪→ X .

Let φ be an automorphism of X0 . Then it follows that

φ̃ := Spec(φ∗) : X ≃ Spec(H0(X0,OX0)) → Spec(H0(X0,OX0)) ≃ X

https://stacks.math.columbia.edu/tag/01P9
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is an automorphism of X that extends (uniquely) φ . Furthermore, the set⋂
g∈G

{x ∈ X | φ̃(g · x) = g · φ̃(x)}

is a closed subset of X containing the dense open subset X0 , and so it is equal to
X . Therefore, φ̃ is a G-equivariant automorphism of X .

Proposition 5.2. Every (G, σ)-equivariant real structure on O extends uniquely

to the normalization Õ of O . Furthermore, all (G, σ)-equivariant real structures

on Õ are equivalent.

Proof. If µ is a (G, σ)-equivariant real structure on O , then by Theorem 4.2,
there exists φ ∈ AutGC(O) such that µ = φ ◦ (dσe)|O ◦ φ−1 . The equivariant
real structure (dσe)|O is the restriction of dσe : g → g , so it extends (uniquely by

[15, Chapter I, Lemma 4.1]) to O , and also to Õ by the universal property of
the normalization morphism (see e.g. [14, Section 12.11]). With a slight abuse of

notation, we will write (dσe)|Õ to denote the extension of (dσe)|O to Õ .

In addition, φ ∈ AutGC(O) also extends (uniquely) to φ̃ ∈ AutGC(Õ) by

Lemma 5.1 applied to X = Õ and X0 = O (here the fact that codim(X\X0, X) ≥
2 follows from (N2)). Hence, µ̃ := φ̃ ◦ (dσe)|Õ ◦ φ̃−1 is a (G, σ)-equivariant real

structure on Õ extending µ . The fact that this extension is uniquely defined by
µ follows again from [15, Chapter I, Lemma 4.1].

It remains to prove the second part of the proposition. Let µ̃ be any
(G, σ)-equivariant real structure on Õ . Then its restriction to O , denoted by µ ,
is equivalent to (dσe)|O by Theorem 4.2. Hence, there exists φ ∈ AutGC(O) such

that µ = φ ◦ (dσe)|O ◦ φ−1 . By Lemma 5.1, φ extends to φ̃ ∈ AutGC(Õ), and so
we must have µ̃ = φ̃ ◦ (dσe)|Õ ◦ φ̃−1 . In particular, µ̃ is equivalent to (dσe)|Õ .

Therefore, all (G, σ)-equivariant real structures on Õ are equivalent.

The question of which nilpotent orbits in a complex simple Lie algebra
have normal closure has been studied by many authors. Let us note that, since a
product variety is normal if and only if each factor is normal, the (non-)normality
of O ≃

∏
i∈I Oi (see (N7)) is therefore easily deduced from the (non-)normality of

the Oi , which means that we can reduce to the case where g is simple. Here is a
list of some known results on this topic, with references:
• The regular orbit, the subregular orbit, and the minimal orbit have normal
closure [18, 32, 7].

• Nilpotent orbits in sln have normal closure [16, 20].
• Nilpotent orbits in son and sp2n having normal closure are determined in
[21, 28].

• Nilpotent orbits in g2 , f4 , and e6 having normal closure are classified in [22,
19, 6, 27]. A list of nilpotent orbits in e7 and e8 whose closure is non-normal,
which is expected to be the complete list, is given in [4, Section 7.8].

We now give an example of a quasi-affine surface X0 in A4
C , endowed with
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a real structure µ that does not extend to the closure X of X0 in A4
C but does

extend to the normalization X̃ of X .

Example 5.3. Let X be the image of the morphism

f : A2
C → A4

C, (s, t) 7→ (s, st, t2, t3);

it is a closed non-normal affine surface in A4
C , defined by the prime ideal

(u2w − v2, vw − ux, uw2 − vx, w3 − x2) in C[u, v, w, x].

One can check that X has an isolated singularity at p := (0, 0, 0, 0), and that
f restricts to an isomorphism A2

C \ {(0, 0)} → X0 := X \ p . Moreover, the

normalization of X , which coincides with the affinization of X0 , is X̃ = A2
C , and

the normalization morphism corresponds to the inclusion of C-algebras C[y, yz, z2, z3] ⊆
C[y, z] .

Let µ̃ be the real structure on X̃ given by (s, t) 7→ (t, s). It restricts to a
real structure µ on X0 (as (0, 0) is fixed by µ̃). But the corresponding comorphism

µ∗ : C[y, z] → C[y, z], Q(y, z) 7→ Q(z, y)

does not preserve C[y, yz, z2, z3] (as µ∗ exchanges y and z ), and so µ does not
extend to a real structure on X .

We do not know whether a similar phenomenon can occur when X0 is a
nilpotent orbit with non-normal closure. More precisely, by the results we have
proven, we know that any (G, σ)-equivariant real structure on a nilpotent orbit
is equivalent to one that extends (whether the closure of the orbit is normal or
not), namely dσe . However, in the case where the nilpotent orbit does not have a
normal closure, it is a priori possible that we have two equivalent real structures,
one that extends, and one that does not, or even two that extend to inequivalent
real structures.

6. Back to Example 1.2

In this last section, we justify that the map µ , given in Example 1.2, is a (G, σ)-
equivariant real structure on Oreg that does not extend to a (G, σ)-equivariant
real structure on sl3 . (Of course, it follows from our Main Theorem that µ is
equivalent to a (G, σ)-equivariant real structure that does extend to g , namely
(dσe)|Oreg , but we will see that this does not imply that µ itself extends to g .)

Recall that, in this example, G = SL3(C), and σ(g) = g for all g ∈ G . To
check that µ is indeed a (G, σ)-equivariant real structure on Oreg , it suffices to

check that the element g0 :=

1 i 0
0 1 0
0 0 1

 satisfies the two conditions of Lemma 2.9

with

H := StabG

0 1 0
0 0 1
0 0 0

 =


a b c
0 a b
0 0 a

 ; a, b, c ∈ C with a3 = 1

 ,
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which is a straightforward computation left to the reader.

Let µ0 := (dσe)|Oreg , and let φ := µ0 ◦ µ ∈ AutGC(Oreg). We check that

φ : Oreg → Oreg, g ·

0 1 0
0 0 1
0 0 0

 7→

g
1 −i 0
0 1 0
0 0 1

 ·

0 1 0
0 0 1
0 0 0

 = g ·

0 1 −i
0 0 1
0 0 0

 .
Since µ0 is the restriction of dσe : sl3 → sl3 , we see that µ extends to a (G, σ)-
equivariant real structure on sl3 if and only if there exists Φ ∈ AutGC(sl3) such
that Φ|Oreg = φ .

Suppose that such a Φ exists. Then, for any u ∈ sl3 , the isotropy subgroups

of u and Φ(u) are the same. Let ua,b :=

a b 0
0 a 0
0 0 −2a

 with a, b ∈ C∗ . Then
α β 0
0 α 0
0 0 α−2

 ∣∣∣∣∣∣ α ∈ C∗, β ∈ C

 is the isotropy subgroup of ua,b in G . Moreover,

we check that {ua,b | a, b ∈ C∗} are the only elements in sl3 with this isotropy
subgroup, and so this set must be stable by Φ.

Let f1, f2 be two C-scheme endomorphisms of A1
C\{0} such that Φ(ua,1) =

uf1(a),f2(a) . It is well-known that fi(a) = νia
ϵi with νi ∈ C∗ and ϵi ∈ Z . Let

wa :=

a 1 0
0 a 1
0 0 −2a

 and let ga := 1
3

a−1 0 3
0 a−1 −9a
0 0 27a2

 . Then we check that

wa = ga · ua,1 , and thus0 1 −i
0 0 1
0 0 0

 = Φ

0 1 0
0 0 1
0 0 0

 = Φ
(
lim
a→0

wa

)
= lim

a→0
Φ (wa) = lim

a→0
(ga · Φ (ua,1))

= lim
a→0

(
ga · uf1(a),f2(a)

)
= lim

a→0

ν1aϵ1 ν2a
ϵ2 1

3
(ν2a

ϵ2−1 − ν1a
ϵ1−2)

0 ν1a
ϵ1 ν1a

ϵ1−1

0 0 −2ν1a
ϵ1

 .
This implies readily that ϵ1 = 1, ϵ2 = 0, ν1 = ν2 = 1, but then ν2a

ϵ2−1 − ν1a
ϵ1−2 =

0, which is absurd. Hence, there is no Φ ∈ AutGC(sl3) such that Φ|Oreg = φ , and
so the (G, σ)-equivariant real structure µ given in Example 1.2 is not obtained by
restricting a (G, σ)-equivariant real structure from sl3 to Oreg .
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Université Bourgogne Franche-Comté,
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