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algorithm to compute the Maslov index, to understand its properties, and to study the implications for the
stability of solitary waves. The algorithm reported here is developed in the exterior algebra representation,
which leads to a fast algorithm with some novel properties. New results on the Maslov index for solitary
wave solutions of reaction-diffusion equations, the fifth-order Korteweg-de Vries equation, and the long-
wave-short-wave resonance equations are presented. Part 1 considers the case of a four-dimensional
Keywords: phase space, and Part 2 considers the case of a 2n-dimensional phase space with n > 2.
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1. Introduction

Hamiltonian evolution equations in one space dimension, such as the nonlinear Schrédinger (NLS) equation, the fifth-order Korteweg-
de Vries (KdV) equation, long-wave-short-wave resonance (LW-SW) equations, have the property that their steady part is a finite-
dimensional Hamiltonian system. For such systems, solitary wave solutions can be characterized as homoclinic orbits of the Hamiltonian
ordinary differential equation (ODE). The spectral problem associated with the linearization about a given homoclinic orbit, in the time-
dependent equations, then leads to a parameter-dependent family of linear Hamiltonian systems. The advantage of these Hamiltonian
structures is that the linear and nonlinear Hamiltonian systems have global geometric properties that aid in proving existence of the basic
solitary wave and in understanding its stability as a solution of the time-dependent equation. Our interest in this paper is in a particular
geometric invariant—the Maslov index of homoclinic orbits.

The study of the stability of solitary waves using the Maslov index was pioneered in the papers by Jones [1] and Bose & Jones [2]. The
linear stability of standing wave solutions of a spatially-dependent NLS equation is studied in [ 1]. The linearization about a steady solution
results in a linear A-dependent Hamiltonian system with two degrees of freedom of the form (1.2) and A a spectral parameter. Geometric
methods are then used to determine the Maslov index, and it is used to prove an instability result. Gradient parabolic partial differential
equations (PDEs) of the form

Uy = dyuy + fu(u, v)

Uy = d2vxx +fv(ua U)
are considered in [2], where d; and d, are positive parameters, f (u, v) is a given smooth function with gradient (f,, f,). Linearizing about
a steady solution (1i(x), (x)), and introducing a spectral parameter leads to a coupled pair of linear second-order ODEs which can be put
into the standard form (1.2), with the asymptotic property (1.5) and A the spectral parameter. Since the PDE is a gradient system it is
sufficient to restrict the spectral parameter to be real. Singular perturbation methods are then used to determine the Maslov index, which
in turn is related to stability. A key feature of this work is the analysis of the induced system on the exterior algebra space /\ 2 (RY).

(1.1)
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Many of the most interesting solitary waves are only known numerically and therefore a numerical approach to the Maslov index is
of interest. It is the aim of this paper to develop a numerical framework for computing the Maslov index of homoclinic orbits. Once the
solitary wave solution is known, analytically or numerically, it is the linearization about that solitary wave which encodes the Maslov
index. Therefore, the starting point for developing the theory is the following class of parameter-dependent Hamiltonian systems

Ju, =B, M)u, ueR xeR, LR, (1.2)

where ] is the standard symplectic operator on R*

1= [{’ f,'], (13)

and B(x, 1) is a symmetric matrix depending smoothly on x and A. Let
Ax, ) =] 'B(x, A). (1.4)

The fact that A(x, A) is obtained from the linearization about a solitary wave suggests the following asymptotic property. It is assumed
throughout the paper that

Ax() = lim A, 1), (1.5)

and that A, (1) is strictly hyperbolic for an open set of A values that includes 0.

The theory applies to linear Hamiltonian systems on a phase space of dimension 2n with n any finite natural number. In Part 1 attention
is restricted to the case of a 4-dimensional phase space which simplifies formulae, and general aspects of the case n > 2 are given in
Part 2 [3].

The Maslov index is a winding number associated with paths of solutions of (1.2), in particular, paths of Lagrangian planes. A Lagrangian
plane in R* is a 2-dimensional subspace of R?, say span{z;, z,}, satisfying (Jz;, z,) = 0, where (-, -) is a standard inner product on R*.

Suppose A is fixed. Consider on the interval a < x < b a path of Lagrangian planes

[a,b] = Z(x,A) = [21(x, A) | Zo(x, 1)] € R¥?,

satisfying Z, = A(x, A)Z for a < x < b. The Maslov index of this path is a count of the number of times this path of Lagrangian planes has
a non-trivial intersection with a fixed reference Lagrangian plane. A precise definition is given in Section 2.

A byproduct of the present theory is some new observations about the properties of the Maslov index, which in turn are useful for
computational purposes. From the numerical point of view, the exterior algebra formulation is also advantageous. We give formulas for
different representations of the Maslov index for Lagrangian planes on /\2 (R*) (and for any n in Part 2 [3]), and present a general algorithm
that works - in principle - for any dimension n. However, the dimension of /\"(R?") increases rapidly with n and so the algorithm is most
effective for low dimensional systems. The algorithm is constructed so that the manifold of Lagrangian planes is attracting. Numerical
results are presented in this paper for the cases of R? and R*.

In order to develop a numerical framework for the Maslov index, one of the first difficulties is defining the Maslov index. Although it is
easy to give a rough definition, making it precise depends greatly on the context and a surprising number of special difficulties and cases
arise.

We will appeal to two constructions of the Maslov index. The first is based on an intersection index between the Lagrangian path and
a reference plane. This definition was used in Maslov’s original work, and was developed further by Arnold [4] and Duistermaat [5]. It is
this definition that is used by Jones [1] and Bose & Jones [2], taking the Lagrangian path to be a path of unstable subspaces and taking the
reference plane to be the stable subspace at infinity.

Independently, Chen & Hu [6] give two constructions of the Maslov index of a homoclinic orbit. Their first definition is based on an
intersection index and is equivalent to the definition in [1,2]. Their second definition is based on a Fredholm index of (1.2) viewed as an
operator in a function space on the real line. However, this latter definition, although equivalent to the definition based on an intersection
index, is not convenient in numerical computations since one is required to compute a spectral projector of an infinite dimensional operator
and then to determine a Fredholm index.

In this paper, the definition of the Maslov index based on an intersection index is extended by introducing an explicit and computable
formula for the crossing form. This theory is developed in Section 6.

Our second method for computing the Maslov index is to approximate the homoclinic orbit by a sequence of periodic orbits, apply the
Maslov index for periodic orbits, and then take limits. There does not appear to be any loss of generality in using periodic approximates.
Vanderbauwhede & Fiedler [7] prove that homoclinic orbits in Hamiltonian systems (as well as reversible systems) can be approximated
as the limit of a sequence of periodic orbits.

The Maslov index for periodic orbits has been widely developed because of its interest in semi-classical quantization (e.g. [8-13]
and references therein). In [14] a new numerical scheme is developed to compute the Maslov index of hyperbolic periodic orbits, and
Chardard [15] proves under suitable hypotheses that if the periodic orbit is asymptotic to a homoclinic orbit, the Maslov index converges
to the Maslov index of the limiting homoclinic orbit. This approach ties in with existing schemes for computing the basic solitary wave,
where the solitary wave is approximated by a periodic orbit and then a spectral method is used for computation.

The computational framework for the Maslov index is illustrated by application to four examples. The first is a tutorial example
on R?, where details are given explicitly in Section 5. It is a scalar-reaction diffusion equation with an explicit localized solution. The
second example is a coupled reaction-diffusion equation which also has an explicit solution—see Section 11. The third example, treated in
Section 14, is solitary wave solutions of KdV5. The fourth example is the LW-SW resonance equation which arises in fluid mechanics and
consists of a NLS equation coupled to a KdV equation—see Section 16. This latter example has two new interesting features: the spectral
problem is on a six-dimensional phase space, and for appropriate parameter values it has a Maslov index which is a non-monotone function
of A—see Section 17.
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2. Linear Hamiltonian systems and Lagrangian subspaces

A Lagrangian subspace can be represented by a Lagrangian frame: a 4 x 2 matrix of rank 2

X
Z= <Y> , (2.1)

where X and Y are 2 x 2 matrices satisfying
Y'x = X'y. (2.2)

There is a correspondence between elements of the unitary group U(2) and Lagrangian subspaces. When X"X + Y'Y = I then X £ iY are
unitary matrices. The determinant of a unitary matrix lies on the unit circle. This property suggests defining the angle

_ det[X —iY]

~ det[X +iY]

Along a path of Lagrangian subspaces, this angle will change, and the winding of this angle is the basis of the Maslov index.
Let Z(x), a < x < b be any smooth path of Lagrangian subspaces. If the path is a loop: Z(b) = Z(a), then there is an integer associated

with the path: the number of times the induced path on the unit circle, represented by el*® encircles the origin. Define the angle associated
with the path by

ik

(2.3)

det[X(x) —iY(x)]

e (x) _ ) (2.4)
det[X(x) +iY(x)]
Then the Maslov index of the path is the integer
b) —
Maslov(Z, k) = M, (2.5)
21

where « here is viewed as the lift from S' to R.

Geometrically span{col(Z)} — Maslov(Z, k) induces an isomorphism between the homotopy group of A(n) at a point A in A(n) and
the group of integers (Z, +).

The Maslov index can also be defined for an arbitrary path of Lagrangian subspaces by introducing the idea of an intersection form. This
approach to the Maslov index goes back to Maslov and Arnold [4]. The key to the definition in this case is the use of an intersection form
or crossing form. Here we will follow the construction in Robbins [11,16] and Robbin & Salamon [17]. Modulo a choice of orientation these
definitions are equivalent.

Let V be a fixed reference plane, represented by a Lagrangian frame. For example a typical choice for the reference plane is

o= ()

In the case of homoclinic orbits a natural choice for the reference plane is the stable or unstable manifold at some value of x.
Suppose, for some value of x, denoted xo, there is a simple intersection between the reference plane V and the path: thatis, Z(xy) NV
is one dimensional. The intersection index at xg is determined by the sign of I", the crossing form, defined by

[(Z,V. %) = (JZ (x0)B, Z(x0) B) vol. (2.6)
Here and throughout the paper vol is taken to be the standard volume form on R*,
vol =e; Aey AesAey.
In the formula (2.6),
, d
Z (XO) = Z(X)s
dx x=xo

and 8 € RP', where RP' is the one-dimensional real projective space. The parameter 8 determines the linear combination of the columns
of Z(xo) which span the intersection subspace

Z(xo) NV = span{&}, & = Bi1z1 + Bazy,

where z1, z; are the columns of Z(xp). At each simple intersection between V and the path Z(x) the sign of the intersection form is £1.
Adding the intersection indices over the path gives the Maslov index

Maslov(Z,V) = Y signI'(Z,V, xo). (2.7)

a<xg<b

This formula assumes that Z(a) NV = {0} and Z(b) NV = {0} and that there is only a finite number of Xy where Z(xq) NV # {0}. When the
endpoints have a non-trivial intersection the formula can be modified to take into account each end intersection (see page 831 of [17]).
Non-regular intersections are not generic in the one-parameter family, and so can be eliminated by perturbing A.

Geometrically, two paths span{col(Z)}, span{col(W)} in A(n) with the same endpoints and such that Maslov(Z, V) and Maslov(W, V)
are well-defined, and are homotopic if and only if there exists V such that Maslov(Z, V) = Maslov(W, V).
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3. The Evans function associated to the set of linear Hamiltonian systems

In order to compare the number of eigenvalues of (1.2) with the Maslov index, we will use the Evans function to determine eigenvalues
based on the setup in Alexander, Gardner & Jones [18], adapted to the symplectic setting in Bridges & Derks [19], restricted to the case
of R4,

Consider the linear system of ODEs,

u, =ARX ADu, ueR? (3.1)

where A(x, A) = J7'B(x, 1) and B(x, ) is symmetric and depends smoothly on x and is analytic in A. In general A can be complex but in
this paper it will be restricted to be real. Assume that A(x, A) tends exponentially fast to a matrix A, (1) when x — Fo0.
Define the stable and unstable subspaces of Ay, (1) by

S — 4, 5 Aco (M)X 0
E, ) ={uekR .X2r+nooe u = 0}

and
EL (L) :={ueR?: lim ef>™*u=0}.
X——00
E*(X) (EY, (1)) is the direct sum of the generalized eigenspaces associated with the eigenvalues of A, (1) with negative (positive) real part.

The matrix A (}) is said to be hyperbolic if R* = ES (L) @ Ei (A); equivalently if Ao (A) has no purely imaginary eigenvalues. Purely
imaginary eigenvalues of A, () are associated with the essential spectrum. The essential spectrum is

Oess = {A € C | A ()) is not hyperbolic}
= {A e C:det[A.(A) —ikI] =0 forsome«k € R}. (3.2)
We will assume throughout that A ¢ 0. Then the Hamiltonian symmetry of A (1) gives that dim E{_(A) = dimE}_ (1) = 2.
Let A\ 2(]R“) be the vector space of 2-vectors in R%. There is an induced system from (3.1)
U =AU, Ue N\“®). (3.3)

Let o (A) be the sum of the eigenvalues of A, (A) with positive real part, and let o_(A) be the sum of the eigenvalues with negative real
part. Then there are solutions U™ (x, 1) and U™ (x, 1) of (3.3) with maximal decay as x goes to —oo and +oo respectively satisfying

im e Ut ) =0 € ANEGS! (3.4)
and
. —o_ (Mxp— - 2 4
Jim e Uy =0 e \"®RY, (3.5)

where ¢* (1) are eigenvectors

AL (MEF () = 0 (ML (). (36)
The eigenvalues o, (1) are analytic functions of A and so the eigenvectors ¢+ (1) can be chosen to be analytic as well.
Avalue A € R\ 0 is called an eigenvalue if the stable solutions U~ (x, ) and unstable solutions U™ (x, 1) have a nontrivial intersection.
Eigenvalues are detected by the Evans function [ 18] which is defined by
D(Mvol =U~ (x, ) AUT(x, 1) € N\ “(®Y. (3.7)

The Evans function is independent of x and is an analytic function of A [18]. Analyticity assures that the zeros of D(A) are isolated. In the
definition (3.7), the property of (1.2),

Trace(A(x, A)) = 0, (3.8)

has been used. This property follows since A = J~'B with J skew-symmetric and B symmetric.
Because of the Hamiltonian structure, the Evans function is invariant under exponential scaling of the following form. Let

U (x, ) = e =0yt (x, 3).
Then the scaled functions satisfy
~t ~t
U, = [A?x,2) — o (WU,
but the Evans function becomes
— alo—+or O~ o -0 v’
D(A)vol =e U XxAM)AU x,\)=U x,A) AU (x,1),
since 0_(A) + o (1) = Trace(A (1)) = 0.
An explicit expression for the entries of A?) as a function of the entries of A is given in [20] for n = 2. It is natural to ask whether there
is an induced symplectic structure on /\Z(R“). For example, can the induced system be written in the form
J?U, =BP(x, MU,

where J? is the induced matrix from J on /\Z(R“)? The answer is no. The most significant obstacle is the fact that J® is not invertible.
The precise relation between J®, B®» and A is given in [20].
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4. U%(x, 1) represent paths of Lagrangian planes

The paths of stable and unstable subspaces U* (x, 1) (or their scaled versions ﬁi (x, A)) are paths of Lagrangian subspaces.
Let @ (x, s, A) be a fundamental solution matrix for (1.2), that is,

J&, =B(x, )@, ®(s,5,4) =1,
and @ (x, s, A)D(s, t, L) = @ (x, t, A). Define the stable and unstable subspaces for each xq € R [21],
E(X, ) ={u e R*: lim @ (x, xo)u = 0} = span {col(U™ (xo, 1))} ,
X——+00

and

E'(xg, A) = {u e R*: Jim @ (x, xo)u = 0} = span {col(UT (xo, 1))} .
Both subspaces define invariant vector bundles over R. This means that

E(x,)) = ®(x,s, \)E’(s,A) and E"(x, L) = @(x, s, \)E“(s, A). (4.1)
Moreover

x—liI-Poo Ef(x,A) = E_(A) and x—liIPoo E'(x, A) = EX (X).

If E“(x, A) is Lagrangian for some x then it is Lagrangian for all x. This observation is implicit in (4.1) but a direct proof can be given as
follows. When u, v € E¥(x, A) are solutions of (1.2),

d
Eﬂu, v) = (uy, v) + (Ju, vy) = (B(x, M)u, v) — (u, B(x, A)v) =0,
X
using the symmetry of B(x, 1). Hence the value of (Ju, v) is an invariant of (1.2) for any pair of vectors u, v € R*:
Ju(x, A), v(x, A)) = (Ju(xo, A), V(x0, A)), Vx.
Butu, v € E¥(x, 1) and so limy_, o, u(x, 1) = lim,_, _ V(x, A) = 0. Consequently
lim (u(x, ), v(x, A)) = 0 = (u(xo, 1), v(xo, 1)) = 0.
X— —00

Therefore, E"(x, A) is a Lagrangian subspace for any x. A similar proof confirms the result for E*(x, A). Another proof is to use Montaldi’s
theorem [22] on Lagrangian planes in R* and a sketch is given in [20].

5. An example in R?

Before proceeding to the full definition and properties of the Maslov index for paths of Lagrangian subspaces which are also solutions
of (1.2) it will be useful to consider the simplest possible context for the Maslov index, linear systems on R2. To illustrate the role of A, a
stability problem for a reaction-diffusion equation is used. It is a simplified version of the class of nonlinear parabolic PDEs studied in [2].
Consider the nonlinear parabolic PDE

dp ¢ 2
Sz PTe xeR (5.1)

for the scalar-valued function ¢ (x, t). There is a basic steady solitary wave solution
~ 3 1
x) = —sech? [ =x ), 5.2
() > ( 3 ) (5.2)

which satisfies axx - $+ 552 = 0. Linearizing (5.1) about the basic state 5 and looking for solutions proportional to e* leads to the spectral
problem

d%¢
dx?
The basic state (5.2) is said to be (spectrally) unstable if any part of the spectrum of . is positive. The spectrum of .# can be explicitly
constructed. It consists of a branch of essential spectra and a point spectrum

0 (&) = 0ess(£) U 0p(2),

Z¢ = rp, with Z¢ = ¢ +20(x). (5.3)

With oess(£) = {A € R: A < —1}and 0,(2) = {—2, 0, 2}. The spectrum is illustrated in Fig. 1.
The point spectrum can be verified by constructing the Evans function. First reformulate (5.3) as a first-order system. Let

u(x,A) = (q(i((xx’,);»))> ,

Ju, =B(x,)u, ucR? xeR, (5.4)

then
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Fig. 1. Elements of the spectrum of .# in the complex plane. The big dots are the elements of the point spectrum ¢ and the hatched interval represents the essential
spectrum. The origin A = 0 is located at the intersection of the two axes.

with

1
J— 2 p—
B(x, ) = A+ 1— 3sech <2x> 0

0

The eigenvalues of A, () are real and hyperbolic when A + 1 > 0. In this formulation the stable (u™) and unstable (u™) subspaces are
represented by

h:t
+ +ys
ur(x, M) =e" [ 1 ,
(sz + yhi>)
wheres = 1x,y =2J/A +1,

2 3
ht(s, A) = +ag + a; tanh(s) £ a, tanh(s) + as tanh(s),

and

w=tu-a  w=i@’-6  a=-yo (55)
and as is an arbitrary nonzero real number. The Evans function is then

D(L) vol =u™ (x, A) Aut(x, A).
Evaluating at x = 0, a straightforward calculation leads to

2
D(}) = —2vA + 1 (21‘153) A (4A + 3)(41 — 5).

The zeros of D()) are the eigenvalues, confirming the point spectrum {— %, 0, +% }

For linear Hamiltonian systems on R? Lagrangian subspaces are just one-dimensional subspaces. The path of unstable subspaces
ut (x, 1) is used to define the Maslov index. The natural one-dimensional subspace to choose for the reference space is E5_(A),

s . 2
E (A) = span { <—y>} .

Then, assume simple intersections between E:_(A) and u* (x, ) - which can be confirmed a posteriori for the example (5.4) - and
assume that

; + s _
im ut () (EL() = {0}
This latter assumption is equivalent to assuming that A is not an eigenvalue. The Maslov index for this case is

Maslov(u®, ES ) = Z sign (Ju, ut),

X0

with xo the points at which u't (x, A) N ES_ is non-trivial, and the volume form can be taken to be vol = e; A e,. This expression for the
Maslov index is the one-dimensional version of (2.7).
The path of unstable subspaces is

2
The intersection form in this case is
r®, E, x) = (Jui, u™)|—y, vol,
= (—uj iy + uj i) |x=y, vol
= [(W3)* — & — 14 12 sech®s) (U] )?] lx=y, vol.

1 2ht
+ _ _aYs
u(x,\) =—e <h5+ N yh*) . (5.6)

However, at a point xo where u™ intersects E§, u; = —3yu{ and so

1
It B, xo) = 12 sech? %0 ©)? vol.
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14

-2.5 1

Fig. 2. Plot of £5(A) A uT(x, 1) as a function of x for the case A = —0.8.

Hence I"(u™, E5_) > 0 at each intersection, and the Maslov index is just the sum of the intersections. An intersection occurs when

£ Aaut =0, where&s = (_zy) )

Now
& Aut =2uf +yuf.
The factor e* is not important and so can be divided out, giving
dh™
g aut ~ — £ 290,
ds
This function has 0, 1, 2 or 3 zeros depending on the value of A. Each zero corresponds to an intersection between the unstable subspace

with ES_(A). The function &° Aut is illustrated in Fig. 2 for the case A = —0.8 where £° Au™ has three zeros indicating three intersections.
A summary of the Maslov index in each region is tabulated below.

3 3 5
A _1<)“<_Z _Z<)‘<O 0<)‘<Z A >

Maslov(u™, ES_) 3 2 1 0

EN[S}

Note that the Maslov index jumps by one at each eigenvalue. Let Ay be any fixed real value of A such that g > —1 and Aq is not an
eigenvalue, then the value of the Maslov index equals the number of eigenvalues of .# in the set A > A,.

This link between the Maslov index and the number of eigenvalues is not a coincidence specific to this operator but a quite general fact
for systems such that 9, B(x, 1) is a semi-definite matrix (see [23] for example). In the case where 9, B(x, 1) is a not semi-definite, we give
a counterexample in Section 17.

5.1. The Maslov angle in A\ ' (R?)

Another way to count intersections between the path u* and some reference plane is to use the Maslov angle (2.4). In this case the
angle « (x, A) is just the angle determined by a polar representation of u™

ey U7 (6 A) — iUy (x, )

e = .
uf (x, A) + iug (x, A)
Asx — +o0
lim ek = 2=
X— 400 2+ iy ’

The Maslov index is then the count of the number of times that x crosses some reference angle, such as the angle associated with the stable
subspace. This version of the Maslov index is equivalent to the definition based on intersection index.

6. The Maslov index for paths

In this section we look at some of the properties of paths of Lagrangian subspaces that are also solutions of (1.2), and bring in the
exterior algebra representation.
Here and throughout, let ey, . . ., e, be the canonical basis for R%. The symplectic form in standard form is then

®==e;ANe;+eAe,. (61)
The symplectic form is related to the symplectic operator J in (1.3) by

Ju,v) = [w,uAv], VYuveR™
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Here and throughout (-, -) is the standard inner product on R* and [, - ]l is the induced inner product on A k(]R“). We will sometimes
write (-, -)4 on R? when the associated dimension is not clear. The equivalence between the induced inner product [[-, - ; and (-, -)4 when
d = dim (/\k(RZ“)) is established in [20]. The basic properties of symplectic exterior algebra can be found in [24].

The set of all Lagrangian subspaces of R* associated with the standard symplectic operator @ will be denoted by A(2). A(2) is a manifold
of dimension 3. It is a submanifold of G, (R*), the Grassmannian of all 2-dimensional subspaces of R* [24].

A path of unstable subspaces will be represented by Ut (x, 1) € A 2(R“), which satisfies the Eqs. (3.3) and (3.4). When A is not an
eigenvalue then U™ (x, ) — EY (L) asx — oo and soin A(n) aloop of Lagrangian subspaces is obtained. The Maslov index is then taken
to be the sum of the weighted intersections of U (x, ) with ES ().

. l_-Isoob()\) is represented by the 2-form ¢~ () defined in (3.6). An analytic basis can always be constructed for E}_(4) [19]. Denote this
asis by

Eo (M) = span{&] (%), & (1)}
Consider the 3-form
U (%, 2) A (1€ (1) + &5 (1).
If for any fixed x and A,
UM 2) A (&5 () +028(0) =0 = a=0,
then we say that E (1) is transverse to E*(x, 1) = image(U™ (x, 1)) at that value of (x, A).
We say that E{_(A) and E*(x, 1) have a simple intersection (or regular intersection) if the intersection is one dimensional; there exists
a € RP' such that
U, M) AE =0 withé =] (L) + €5 (M). (6.2)
We will assume that non-trivial intersections are regular. It is proved in [4] that non-regular intersections can be eliminated by perturba-
tion. This property can also be proved using the homotopy equivalence property of the Maslov index, and a nice proof of this is given in
Section 3.4 of [13].
Now, let u; (x, 1), uj (x, 1) be a basis for E(x, A) such that

Ut (x, 2) = uf (x, A) Auf (x, 1).
Then (6.2) implies that there exists (81, f2) € R? \ {0} such that
£ = Bruf (%, 1) + faug (x, ) == Z* (x, 1) B. (6.3)

The Maslov index is a count of how many times the path Ut (x, 1) crosses the reference space E_ (1), weighted by the intersection form.
Starting with (2.6), and using the Eq. (1.2) and the equivalence (6.3) it is

I'(A,V, x9) = (B(xo, ), &) vol. (6.4)
Note that the x-dependent path U™ (x, 1) drops out. For fixed A, once we have found a point x, corresponding to a regular intersection, the
intersection form can be evaluated using eigenvectors spanning E}_(A) and the known symmetric matrix B(xo, ). However there is the
hidden calculation of determining & € RP' and an algorithm for this is developed in Section 13.
Suppose A is not an eigenvalue. Then the Maslov index of the path U™ relative to E} is

Maslov(U, ES, ) = ) sign (£, B(xo, 1)§) vol, (6.5)

where the sum is over all points xq of intersection in the interval —co < xo < +00.
This expression will serve as a definition for the Maslov index of a solitary wave at A:

Maslov(}) = Maslov(UT (-, 1), E_(})). (6.6)

Proposition 1. Suppose A is not an eigenvalue. Then under the given hypotheses on (1.2) the Maslov index of a solitary wave is finite.

Proof. Introduce a metric dist(-, -) on the manifold of 2-dimensional subspaces of R*. For example this can be the standard metric on the
Grassmannian G, (R%) [25].

Let L € R\ 0. which is not an eigenvalue. Since E{_(A) and E!_(A) are transverse, by a suitable scaling of the stable subspace E}_(A)
we can take

dist(E5, (1), E (1) > 1.

To simplify notation, the argument in dist(-, -) should be interpreted as the representation of E*" on the Lagrangian-Grassmannian.
When A is not an eigenvalue we have that E¥(x, ) — E% (1) as x — =£o0. Therefore, given any € > 0, there exists § > 0 such that

1
dist(E"(x, 1), Ex (V) < ¢ for |x| > 3
Now use the triangle inequality
1 < dist(El (1), Ei (1)) < dist(E_(A), E*(x, 1)) + dist(E"(x, A), E& (X)),
or

1
dist(E“(x, 1), E_ () > 1—¢ for |x| > 3

Hence there exists x, > 0 such that for |x| > x, E“(x, 1) and E}_(}) are transverse. Intersections are therefore limited to the finite interval
—X, < X < X4. Since intersections are generically isolated their number is finite. ®
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7. The Maslov index on A *(R%)

The vector space /\2 (R*) is six-dimensional, and the orthonormal basis induced from the basis of R* is

Ei = e ANey, E, = e Aes, Es = e A ey,

E; = e, Aes, Es = e, A ey, Ec = e3 A ey. (7.1)
AnyU e A 2(]R“) can be represented in the form
6
U=> UE. (7.2)
j=1
The Grassmannian G, (R?) is a subset of /\ *(R*) defined by
0=UAU=1Ivol, I :=UUs— UUs+ UsUys. (7.3)
The Lagrangian-Grassmannian is the subset defined by
0O=wAU=D5hLvol, I,:=U,+ Us. (7.4)

The Lagrangian-Grassmannian A(2) is the three dimensional submanifold of P ( A 2(]Rf‘)) definedbyl; =1, = 0.
LetV e A 2(]R“) be a fixed Lagrangian plane. Then

A1(2)=[Ue /\2(]R4)HA(2):U/\V=O}

is a codimension one submanifold of A(2) [4]. We have a sequence of manifolds

Manifold ~ A*(RY) RP5 Gy(RY) AQ2) A'2)
Dimension 6 5 4 3 2

In this table RP® represents P ( A 2(]R“)).
Consider the class of linear Hamiltonian systems (1.2) with B(x, A) satisfying the asymptotic properties (1.4) and (1.5).

Proposition 2. A(2) is an invariant manifold of (3.3).

Proof.
d
—UAU=U,AU+UAU;
dx
=APUAU+UAAPU
= Trace(A)U AU
=0
since Trace(A) = 0, also using the property [26]
APUAU+UAAPU = Trace(A)U A U.

This proves that U A U is a constant along solutions. Similarly,
d
— oAU =wAU,
dx
o AAPU
=wAAPU+ AP0 AU—-APw AU
Trace(A)w AU—APw AU
= -A%p AU
=0,

since w is in the kernel of A®’, a property which is proved in [20]. This proves that U A U and w A U are constant along solutions. Hence
the special case U A U = w A U = 0 completes the proof. ®

Let V = span{&;, &} be a fixed Lagrangian plane; that is £ and &, are linearly independent and (J&;, &) = 0. The reference subspace
V is represented by the form

V=£§ Aé&.
The intersection between a path of Lagrangian subspaces U(x, 1) and V can be described as follows. For each fixed A define
d(X) = {a € R® : UK, 1) A (11 + a26) =0} .

Then there are three cases
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o If o7 (xg) = {0} then U and V are transverse at x = xg.

e If &7(x) is one dimensional then U and V intersect in a one-dimensional subspace at x = xq (the case of regular crossing).

o If o7 (xy) = R? then U and V intersect in a two-dimensional subspace at x = x, (this case is sometimes referred to as an intersection
between U and the vertex of V).

The Maslov index for a path of Lagrangian subspaces is given by (6.5). However, in the case of /\ %(R%) a new representation of the
intersection form can be obtained. Suppose that a regular crossing occurs

UNV = span{&},
at x = X, then the crossing form is

I'(U,V,x)) = oA ENAE. (7.5)
To verify this formula, note that

wAaA] le=(a, c)vol, foranya,ce R
Hence

O AEAAE =0 AEAJTBE = (£, BE) vol,

recovering the expression in (6.4). There is an interesting geometric interpretation of (7.5). At a regular intersection the two-plane & A A&
is not a Lagrangian plane. It is an element of G, (R*) but not an element of A(2). Since A(2) is a codimension one submanifold of G, (R*),
the sign of w A & A A& determines which side of A(2) in G,(R*) it lies. See Appendix A for further discussion of this case.

Hence the Maslov index of a path U(x, A) relative to V is

Maslov(U, V) = Z sign(w A & N AE),

X0

where the sum is over all interior intersections.
8. The Maslov angle on A *(R%)

In R?, the Maslov angle is just the angle associated with the polar representation of a vector in R? as shown in Section 5.1. For a
Lagrangian frame of the form (2.1) the Maslov angle is defined as in (2.3) and (2.4). In this section a new formula for the Maslov angle is
given for the exterior algebra representation of a Lagrangian plane. Here, the result for 4D phase space is given and in Part 2 [3], the general
result for 2n-dimensional phase space is given.

A Lagrangian frame can be partitioned into two 4 x 2 blocks as in (2.1) and it can also be represented in terms of its columns:

Z= (’;) — [z |21, with(zy,2) = 0. 8.1)

Denote the exterior algebra representation of the Lagrangian plane by

U=12z NZ,. (82)

Proposition 3. There exists a 2-form C,

C=C +iC. withC,, G e /\ @,
such that
det[X — i¥]vol = C A U. (8.3)

It follows from this proposition that there exists a scalar complex-valued function K such that:
CAU=K(@U)vol. (8.4)

A formula for the Maslov angle « (the real number defined up to an addition by a multiple of 27 by el = det((X —iY)(X +iY)™"))is then
immediate:

Proposition 4.

e = K(U)/K(U).

It remains to prove Proposition 3. The proof is by explicit construction. Let

cj:ej—ijej, ]: 1, 2.

Then
. 1\ (X (€1,21) (c1,22)
X—iY = (—1]) (Y) = [cl | CZ]T[Zl | ZZ] = ((C;, Z:) <C;, Zi)) 5 (85)
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and so, using the induced inner product' on /\2 (R*) (see [20])

(c1,21) (€1, 2Z)

det[X — iY]vol = det |:(c2, z1) (6, 2)

]vol = [[c; A ¢, U]}, vol.

This gives a formula for K,
K(U) =ger [c1 A2, UTl,.

It is not necessary to give an expression for C since in the computations it is K that is needed. However, for completeness it is given. Let C
be a 2-form satisfying

CiINANC A E =[ciAC, 1 A Cz]]z vol. (86)
Then
det[X — iY]vol = CA U.

The 2-form C is in fact the Hodge star of ¢; A ¢, although the details of that characterization are not needed.
Now compute the formula in coordinates on /\Z(R“). On R* with the standard basis,

i AC = (e —iJer) A(e; —iJey)
(e; —ie3) A (e —iey)
=e;Ne,—ie; Ae;+ie; Ae; —e3 A ey,

and so, if U = Zje:] UjE;, with Eq, .. ., Eg the standard basis on /\ 2(RY),
K@) =[[c; Ay, U]l; = Uy —iUs + iUy — Us,
and so the expression for the Maslov angle is

Uy — Us — iUs + iUy
T U — Ug +iUs — iUy

ik

This expression is equivalent to the formula derived in equation (22) of [2].
The two-form C in (8.3) is computed to be

C:—e1/\e2+e3/\e4+i(e1/\e4—e2/\e3).

9. Further decomposition of the Maslov angle using the eigenvalues of a unitary matrix

Let Z € R**? be a Lagrangian frame on R* of the form (8.1) and U defined as in (8.2). Then the matrix
Q= X—-iY)X+iV’

is a unitary and symmetric (but not Hermitian) matrix.
The Maslov angle for a closed path (2.3) is defined using the determinant of Q. However, Q has two eigenvalues of unit modulus. Denote
these eigenvalues by e"9, j = 1, 2 with «; real. Then

e =e"1e"? = i = k1 + Kk, (mod 27).

These eigenvalues are independent of the choice of Z € R**? as a representative of a Lagrangian space: choosing another representation
leads to a similar matrix.

These eigenvalues can also be used to give another formula for the sign of each intersection. Fix the reference angle to be 0 (mod 27 ).
There is a 1-dimensional intersection at xo with a reference plane if and only if there exists e/r®) = 1 withr = 1or r = 2. There is a
2-dimensional intersection at x, with the reference plane if and only if e/r®*0) = 1forr = 1andr = 2.Ife¥r®) £ 1 forr = 1andr = 2
then the intersection is transverse.

When the intersection is regular, the sign of the intersection is given by:

lim+ #{r € S|k (x0) € (0, ) 4+ 272} — #{r € S|k, (xo) € (—m,0) + 277}

X—>Xg

Thus, it is possible to determine the Maslov index, defined with intersections by simply tracking the crossings of the angles «; with 27 Z.

1 A real inner product is used throughout the paper. Complexification is used so rarely, a Hermitian inner product is not necessary. One just needs to keep track of the
complex conjugations.
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9.1. The angles k; in the exterior algebra representation

The two angles k1, k3 satisfy

det(ul — Q) = u? — Trace(Q)p + det(Q) = 0, (9.1)

with u of unit modulus and p, = e'r, r = 1, 2. Both the trace and determinant can be expressed in terms of the exterior algebra
representation.
For the determinant, as shown in Section 8,

det[X —iY] = K(U) := [[c; A ¢z, U], = Uy — iUs + iUy — U,
for \*(®*) 35U =Y, UE, Hence
det(Q) = K(U)/K(U). (9.2)

It remains to express the trace of Q in terms of the exterior algebra representation.

Proposition 5.
2
Trace( = —(U —+ Us). 9.3

To prove this proposition, use (8.5) to relate the columns of Z to the X — Y decomposition

o[z @)
x*”‘[(cz,zn <c2,zz>]'

Hence

Q=L ((chz]) (cl,12>) [ (@) —(@. zz>],

K \(€2.21) (€2,Z) ) | —(C2,21) (c1,21)

and so

Trace(Q) = €1, 21) (€2, Z) — (€1, Z2) (€2, 1) — (€2, Z1) (€1, Z2) + (€2, Z2) (€1, Z1)) ,

C1,24 (€1, 23) (c1,z1) (€1, 22)
( I:Cz,21 (Cz,Zz):|+det|:(Cz,Zl> (Cz,Zz)])’

(«
([er1 A, 2y A ] +HErT ACa, 21 AZ L)

Q..
v—r

([ei A+ AC, 21 AL L)

RNl = RNl = =Nl = =N =

2
= ?('Iel/\e2+e3/\e4szl/\12]]2)

2
= ?(U1 + Us),
using
Re(c; Ac;) = Re((eq —ie3) A (e; +iey)) = e; Aey +e3 Aey,

proving (9.3).
GivenapathUe A 2(]R“) the eigenvalues of Q can be computed by substituting (9.2) and (9.3) in (9.1) leading to

Uy + Us £ \/4U1U6 +2UsUq — U2 — U2
Uy +iUs — iUy — Ug
Using the properties of a Lagrangian plane, U, + Us = 0 and U,Ug — U,Us 4+ U3U4 = 0, this formula reduces to
, Uy + Us i,/4U2 + (Us + Uy)?
Mz = e"12 = .
’ U; + iUz — iUy — Us

The formula ? for the decomposition of the Maslov angles in dimension 3 is given in Part 2 [3].

Rz = e*12 =

2 In the most general case, the eigenvalues e’/ are the roots of the following polynomial:
P(p) = det((X —iY) — u(X +iY)), pneS.

The coefficients of P are antisymmetric multi-linear functions of Z. As a consequence, they can always be expressed as a linear combination of the minors of Z and hence, of
the components of U. Therefore, it is possible to compute the eigenvalues " from U.
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10. The A dependence of the Maslov index

Let B(x, A) be as defined in (1.2) with the asymptotic property (1.5). When the A-dependence of B(x, 1) takes a simple form one can
say more about the A-dependence of the Maslov index. For example, in Section 5 the matrix B(x, A) in (5.4) satisfies

9 [1 0
aB(Xv )‘) = _0 O:| )

that s, it is positive semi-definite. In the example in Section 11 the matrix B(x, 1) = JA(x, A) with A(x, A) defined in (11.3) has the property

-1 0 0 O

0 0O -1 0 O
ai)“B()“ }‘-) = 0 0 0o o}’

Lo 0 00

which is negative semi-definite.

When 9, B(x, 1) is semi-definite, the Maslov index is a monotone function of 1. For the case of gradient systems (as in Sections 5 and 11)
this property is proved in Lemmas 3.3 and 3.7 of Bose & Jones [2]. Related results are proved by Arnold [27] and generalizations of these
results are proved by Chardard [23]. These results are summarized in

Lemma 6. Assume that:

B(x, A) is a smooth function with respect to x and analytic with respect to A.

There exists Boo (1), y > 0and F > 0 such that Vx, A||[B(x, A) — Boo(A)|| < Fe 7,
The open set X = R — o, of real numbers is not empty.

0, B(x, A) is a semi-definite negative symmetric matrix.

If [A, 2] N oess = B and Xq, Ay & o, then Maslov(),) — Maslov(\) is equal to the number of eigenvalues with multiplicity in [L1, A3].

The first three assumptions are the usual hypotheses made to prove the analyticity of the Evans function and the theorems linking
eigenvalues and the zeros of the Evans function. Using this lemma, it is possible to define the following invariant for the homoclinic orbit:

Definition 7. Maslov"°™clini¢ js defined as lim, _, o+ Maslov(}).

With the hypotheses of Lemma 6, Maslov®™ecinic is only dependent on A(x, 0), and hence on the linearization of the ODE satisfied by
the homoclinic orbit.

In fact, it is possible to define Maslov"®™°ini¢ without any reference® to a parameter A (see [2,6,23]). In these references, the quantity
Maslovomedlinic ig defined as a kind of Maslov index for the path Z(., 0) with respect to E?,(0). Unfortunately, Z(., 0) does not necessarily
admit a right end point, and when it has one, the intersection with E¥_(0) is not trivial and some extra work is needed.

In any case, these geometrical constructions are not convenient for numerical computations and will not be used in the sequel.

10.1. The Maslov index for large values of |A|

When A — +o00 (or A — —o0 if the essential spectrum extends to minus infinity) we expect the Maslov index to converge to some
finite value. This property is similar to the property of the Evans function for large A. The hypotheses are based on the analogous result
of [28], adapted to the setting of the Maslov index.

Hypothesis 8. Suppose

e that there exists Ay € R such that o, is empty forall A > Ag;
e For large enough A, A, (1) has no purely imaginary eigenvalues;
e LetK(A) be a symplectic 4 x 4 matrix depending analytically on A whose first 2 columns are a basis for E%_ (1) and whose last 2 columns
are a basis for E_(1). Define
F(x, 1) = KT (W) (AKX, 1) — A (LD))KQ).

e Suppose that, for large enough X:

/ |[F(x, A)|dx is bounded, uniformly in A

R

/ |[F(x, A)|dx tends to 0 when xqg — o0, uniformly in A
|x|>xp

/ [F?(x, 1)eq|dx tends to 0.
R

3 For example, in the case of a transverse orbit (i.e. dim(E°(x, 0) N E*(x, 0)) = 1), we have:

Maslov™®™onic — Jim  lim  max(Maslov(Z(] — 0o, x — €], 0), E¥(x, 0)), Maslov(Z(] — 00, x + €], 0), E*(x, 0))).

X=>+00 -0t >0
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Remark. If there exists Ay such that o, is empty for all . < X the above hypotheses can be modified accordingly.
Proposition 9. Assume that Hypothesis 8 is met by A(x, 1), then

lim D(A) =1, and lim Maslov(:; ) = 0.
A—>—+00 A—+00

The proof is obtained by following the argument in Proposition 1.17 in Pego & Weinstein [28] and the Appendix of Bridges & Derks [19].
Let KX ()) be the matrix whose entries are the 2 x 2 minors of K(1). In terms of bialternate product, X (1) = K(1) ® K(1). One proves that
K (A)~1Y(., 1) converges, uniformly in x, to the constant vector e; when A — —oo. Then, for large enough A, K (1) ~!Y(., A) has a null
Maslov index and so does Y (., 1). See [23] for a detailed proof.

10.2. The Maslov index at A = 0 when the basic state is approximated by hyperbolic periodic solutions

In this paragraph, we assume that B(x, 0) = DZH(&x\)) where H : R* — R is the Hamiltonian function and :ﬁ is the basic homoclinic
solution of the autonomous system

Ju, = VH(u). (10.1)
This hypothesis is natural in the solitary wave context and is indeed satisfied by all examples presented in this article.
Suppose that 9,B is semi-definite negative near A = 0 and that the dimension of the space of square integrable solutions of

Ju, = B(x, O)u is one. Furthermore, suppose ¢ is approximated by hyperbolic 2T”—periodic solutions ¢y, for which the Maslov index is

well-defined [14,15].
The limit of the Maslov index of the periodic solutions @, when k — 0 is, as shown in [ 15] under natural hypotheses, Masloy"°moctinic .
1/2(1 — «), where « is the sign of f'(k) near k = 0, with f (k) = H(®y).

11. A coupled reaction-diffusion equation with explicit Maslov index

Consider the system of reaction-diffusion equations

du _ u 4u+6u* —c(u—v)
ou _otu (U —v
35 ggz (11.1)

5 W—4v+6v2+c(u—v),

where c, the coupling constant, is a non-zero real parameter, restricted to the values c > —2. When ¢ > —2, it is straightforward to show
that the trivial solution u = v = 0 is stable in the time dependent problem, and the trivial solution of the steady equation is hyperbolic.
This system has the exact steady solitary-wave solution

u=v =10 = sech’(x).

Linearizing (11.1) about the basic state U and taking perturbations of the form
eM(u(x, 1), v(x, 1))

leads to the coupled ODE eigenvalue problem

Uy =A+4+c—12U)u—cvo

Vo = —CU+ (A +4+c—12u(x)) v. (11.2)
This eigenvalue problem can be written in the standard form
u, =A(X, )u, ueR} (11.3)
withu = (u, v, uy, vy) and
0 0 1 0
A(x,)) = f(x(,) » _OC 8 (1) , withf(x, ) = A + 4+ ¢ — 12 sech?(x).
- f(x,») 0 0

The system (11.3) is Hamiltonian: JA is symmetric.
The spectral problem (11.3) can be solved explicitly. Write the second-order problem in the form,

(9 e )L 40

Let

(SR~
[l
=) =
ST
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Fig. 3. Plots of the spectrum in the A-plane for c = —2 (starting at the top),c = —1,¢ = 0,¢ = 1and ¢ = 3. For each plot, the intersection of the axes is the origin A = 0.
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Then substitution into (11.4) leads to the decoupled system
T + 12sech®(X) U = (A + DU
T + 12sech?(x) T = (A + 4 + 20)7.

These two systems have explicit solutions (cf. Appendix B), and using these results one finds that there are exactly six eigenvalues for the
spectral problem (11.2):

A =-—-3-—2c, Ay = —3, A3 = —2c, =0, A =5—2c, A = 5.
The essential spectrum is
Oss ={ALER:A<—-4U{LeR: A< —4—2c}.
When ¢ = 0 then there are three double eigenvalues:
A=Ay =3, Az = Aq =0, As = Ag = 5.

For ¢ nonzero and small the eigenvalues A1, A3 and A5 are perturbed to the left (when ¢ > 0) and to the right (when ¢ < 0). Hence positive
coupling is stabilizing and negative coupling is destabilizing.

(11.5)

When ¢ = —2 (the lower bound on c for stability of the zero state and hyperbolicity) there are four positive eigenvalues, which is the
maximum number of positive eigenvalues.
Atc = —% one of the positive eigenvalues passes through zero, leaving 3 positive eigenvalues. Then when ¢ = 0 another eigenvalue

arrives at zero leaving two positive eigenvalues. Then when ¢ = % a third eigenvalue passes through zero. For all ¢ > % there is one
positive eigenvalue, one zero eigenvalue and four negative eigenvalues. The configuration of the eigenvalues as a function of c is shown
in Fig. 3.

When the system decouples into two subsystems, the Maslov index is the sum of the Maslov indices of the subsystems

Maslov?® @ Maslov?® = Maslov?’. (11.6)
X1
If we choose a Lagrangian frame of the form ();) = <}2 )gz) to represent the unstable space, we have indeed det(X + iY) = det(X;
0 Yy

+ iY7) det(X; + iY3). Eq. (11.6) follows easily from this property.
The Maslov index for the first 2D system in (11.5) is tabulated below.

A —4 <A< -3 -3 <A< O<A<5 A>5
Maslova 3 2 1 0

The Maslov index for the second 2D system in (11.5) is tabulated here.

A —4—-2c<A<-—-3-2 —3—-—2c< A< -2 —2c <A <5—2 A>5—2c
Maslov2” 3 2 1 0

The Maslov index for the full 4D system for any A is then obtained by fixing ¢ and then applying the sum formula (11.6). For example,
fixc = —1and compute Maslovhomocllmc,

= lim [Maslov%D &) Maslov%D]| = 3.
A—01

Maslovhomoclmlc|

c=-—1 c=—1

A summary of the Maslov index of the homoclinic orbit as a function of c is given in the following table.

A —2<c<-3 -2 <c<0 0<c<?2 c>

Masloy"omoctinic 4 3 2 1

NIIE)
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12. Numerical implementation—Approximation by periodic orbits

When the solitary wave is approximated by a hyperbolic periodic orbit, the Maslov index of the periodic orbit is computed using the
Maslov angle (2.4) and (2.5) in the exterior algebra representation (e.g. Eq. (8.7)). An algorithm for this case has been proposed in [14],
and a proof of convergence of the Maslov index in the limit as the periodic solution converges to the solitary wave is given in [15]. A first
possibility would be to compute the Maslov index for a sufficiently good periodic approximation of the solitary wave.

However, it is possible to avoid the computation of periodic approximants and to adapt the algorithm presented in [14] to the
homoclinic case. Fix A and a solitary wave. The steps in this new algorithm are as follows.

(1) Choose a large enough interval [—L, L].
(2) Compute the eigenvalue with largest real part of Aézo) (1), denoted by o, (1), and its associated eigenvector £+ (X).
(3) Integrate the equation

U/ = [A?(x, 1) — o (WU, (12.1)

on [—L, L], taking T (A) as initial condition at x = —L, using any standard numerical integration scheme. The justification for the
arbitrariness in choice of numerical scheme is given in Appendix C.

(4) UtT(L, 1) and UT(—L, 1) are nearly collinear, and an approximation to the Evans function is determined from their constant of
proportionality

U™ (L, 1) = D(W)UT (=L, L) + Error,

where the error is generally of the order of machine precision.
(5) Compute e*® using Eq. (8.7) or an analogous representation.
(6) Compute the lift ¥ (x) and choose the stepsize Ax so that |« (x + Ax) — k(x)| < 7.
(7) Compute the Maslov index using (2.5).

There is a number of sources of error in the algorithm. There is an approximation error due to the fact that the solitary wave is
approximated by a periodic orbit. Two parameters have to be chosen: L and the step size Ax. The choice of step size is a familiar source of
error. The consistency error of the numerical integration scheme will be of the form C AxP, for some natural number p, at each step, where
C is a constant depending on the derivatives of A. The choice of numerical scheme will also impose some stability condition.

Since the Maslov index is an integer, the proposed scheme will give the Maslov index if the relative error on U™ (-, 1) is small enough.
However, if supy, ||U" (-, 1)|| is very small (for example when the Evans function is small), the relative error may be too big and lead to a
miscomputed Maslov index. This is the case when A is an eigenvalue or near an eigenvalue, since there is an integer-valued jump in the
Maslov index at eigenvalues.

13. Numerical implementation—Intersection index algorithm

The numerical algorithm based on the intersection index is similar to the algorithm in Section 12 except that the computation of the
angle « (x) is replaced by the computation of the angles «; and «». The previous algorithm can be modified as follows:

(1) Choose a large interval —L < x < L. Initialize Maslov to 0.
(2) Construct a symplectic matrix K(1) such that

K() (é) and KO\ (?)

represent the stable and unstable spaces of A, (1). K()) defines a symplectic change of coordinates in which the coordinates of stable
and unstable spaces in the exterior algebra are respectively

1 0
0

UO == . and VO =
0 1

Let X (1) be the matrix whose entries are the 2 x 2 minors of K()). In terms of bialternate product, X (1) = K(1) ® K(L).
(3) Compute the eigenvalue with largest real part, o (1), of Ag)) ).

(4) Define U"(x, 1) = KX (A)~'UT (x, A) and integrate the equation for U,

d ~ ~
SUT =100 AY (L K () - 0s (I, (13.1)
X
on [—L, L], taking Uy as initial condition for IF atx = —L, using any standard numerical integration scheme.

(5) Compute the angles k¢ and k, corresponding to U™ over [—L, L]. If an angle «; crosses 27t Z between x and x + Ax, update the value of
the Maslov index to:

Maslov — Maslov + sign (k;j(x + AX) — «i(x)) .

(6) Return UT (L, 1) A Uy as an approximation to the Evans function.
(7) Atx = L, return the value of the Maslov index.
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14. The Maslov index of solitary wave solutions of KdV5

In this section we study the Maslov index as a function of A for the ODE eigenvalue problem

Gxooe — Pxx + a(X)p = A, (14.1)

where ¢(x, 1) is scalar valued, P is a real parameter and a(x) is a localized function which satisfies a(x) — a as x — o0, with
exponential decay of a(x) at infinity. For definiteness it is assumed that a,, > 0. The ODE (14.1) can be put in the form (1.2) with

¢ ax)—A 0 0 0
u= ¢m‘/’_“ P, and B(x, 1) = 8 _01 8 (1) (14.2)
bx 0 0 1 P
The spectrum of the system at infinity Ao, (1) = J~ !B (1) has the characteristic polynomial
det[Ac (M) — pul] = p* — Pu® + aoo — A. (14.3)
With a,, > 0 and A = 0 the four roots are hyperbolic for all P such that
P +2./ay > 0,

which is assumed to be satisfied henceforth. When A # 0 the essential spectrum will form the boundary of the hyperbolic region. The
essential spectrum is

Uessz{)‘-ER:)\-zaoo+Psz+S4, s € R}.
When

1
A< A% =g, — 3PP —IPD,

the spectrum of A, (1) is hyperbolic. Hence, all the hypotheses for the existence of the Evans function and the Maslov index are satisfied.
We will apply this theory to determine the Maslov index of a class of homoclinic orbits.

The eigenvalue problem (1.2) appears in the linearization about a solitary wave solution of the fifth-order Korteweg-de Vries equation
(KdV5). KdV5 appears for example as a model equation in plasma physics, and in the study of capillary-gravity water waves [29-35].

To see the role of (1.2) in the linearization of KdV5, consider the following form of the fifth-order KdV equation relative to a moving
frame, moving at speed c,

¢ 0 9 Py ¢

— —c— 4+ — (") +P— - — =0, g>1 14.4

i vl A Bt vl v 1= (144)
A further scaling can be introduced so that ¢ = 1, but including c is useful for comparing with results in the literature on KdV5. Effectively,
q is a third parameter, but its value is restricted to natural numbers.

Steady solutions of (14.4), that decay to zero as x — %00, satisfy the 4th-order ordinary differential equation

Oxxxx — Pxx + ¢ — ¢q+] =0. (14.5)
The system (14.4) linearized about a solitary wave $(x) solution of (14.5) takes the form

a¢p ad

— = — (¥9),

at 0x (£¢)
with

2$ = foox — P b+ cd — @+ D) $. (1456)

In this case, a,, = c. There are two spectral problems:
~ d
Z¢p=X7p and Lo =Xrp, Lo = &z. (14.7)

The operator .# is self-adjoint (in a suitably-chosen Hilbert space) and so A € R whereas L is not self-adjoint and % - which is the stability
exponent - can in general be complex. The relationship between these two eigenvalue problems is discussed in Section 15. First the Maslov
index of the spectral problem #¢ = A¢, which can be put in the form (1.2), is studied.

The ODE (14.5) has been extensively studied and many solitary wave solutions have been found; a classification is given in [36]. There

are some special cases where explicit solitary wave solutions can be constructed. An example is the explicit solution a(x) = %sech4 (ﬁ)

which exists whenqg = 1,c = 1and P = %. However, the interesting solutions of (14.5) need to be computed numerically. They can be
computed using a spectral method (approximate the solitary wave by a periodic function of large wavelength and then use the Fourier
series to represent it), or in the case of symmetric solitary waves a shooting algorithm can be used. We used both methods to compute
solitary waves. An example of the family of one-mode solitary waves as a function of P, computed using a spectral method, is shown in
Fig. 4.

Although these solitary waves are solutions of the model ODE, they are representative of solutions of the full water-wave problem.
Dias, Menasce & Vanden-Broeck [37] have found large-amplitude branches of these solutions in the full water-wave equations.
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Fig.4. Numerically computed solitary waves for the KdV 5 equation for the case ¢ = 1,c = 1(ax = 1)and —2 < P < 3. For each value of P, the value of the corresponding
unimodal homoclinic solution ¢ is plotted as a function of x.
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Fig. 5. Energy of the 27”—periodic solutions as function of kforq = 1,c = 1andP = ?

Symmetric solutions are computed numerically using a shooting method: the starting point is an element of the tangent space of the
unstable manifold and the ending point is a symmetric point. A typical time step is ﬁ and the chosen integrator is the fourth-order
Runge-Kutta method. For this integrator and this time step, the error on the Evans function at 0 (which is then equal to 0) was of order
10712, This is quite close to the minimum error reachable by using double precision.

The ODE (14.5) can be characterized as a Hamiltonian system on R* and the Hamiltonian in the original coordinates is

1, 1.5 1, 1 q+2
E(¢) = E‘pxx + Epd’x - 5C¢ + m(b - ¢x¢xxx- (14-8)
The function E(¢) is constant along solutions of (14.5) (i.e. g—i = 0). Physically, for equations like the KdV5, this quantity is associated with

momentum flux. For simplicity, we will just refer to it as energy. The energy of the periodic approximants gives some information about
the nature of the limiting homoclinic orbit.

The energy can be plotted as a function of wavenumber k along a branch of periodic solutions as the wavelength tends to infinity
(k — 0) as a function of q and P. First the case P = %, ¢ = 1and g = 1is considered and it is shown in Fig. 5.

In this case the energy is a monotone function of wavenumber and the convergence k — 0 is rapid. Keepingg = l1landc = 1
but decreasing P to P = —1 leads to oscillations indicative of a Shilnikov-type bifurcation as shown in Fig. 6. Decreasing P further to
P = —1.9 shows more dramatically the Shilnikov-type oscillations, as shown in Fig. 7. In Fig. 7 a sequence of bifurcations occurs along the
branch. Each point on the energy-wavenumber diagram where E’ (k) = 0 corresponds to a saddle-center bifurcation of Floquet multipliers.
There are always two Floquet multipliers at +1 due to the fact that (14.5) is autonomous. When E’(k) = 0 an additional pair of Floquet
multipliers coalesces at 4+ 1. Each one of these saddle-center bifurcations of the branch of periodic orbits leads to a secondary homoclinic
bifurcation [38]. So, in addition to the limiting homoclinic orbit that we are principally interested in, there is a countable number of
other orbits generated along the branch, which are homoclinic to the branch of periodic orbits. Although there is an infinite number of
bifurcations along the branch our numerical results show that the Maslov index of the limiting homoclinic orbit is finite.
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Fig. 6. Energy of the 27”-periodic solutions as a function of k forg = 1,c = 1and P = —1.
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Fig. 7. Energy of the 2%-periodic solutions as a function of k forqg = 1,c = 1and P = —1.9, for small values of k.

14.1. Computing the Maslov index as a function of A

First consider the case P = %3 q = 1and ¢ = 1 where the unimodal solitary wave is given explicitly. The lifts « (x) of the Maslov angle
for this system are plotted as a function of x in Fig. 8 for various values of A. In Fig. 9, the corresponding Maslov indices have been plotted
as a function of A. The Evans function shows that .# has exactly three eigenvalues in this case. Denote these eigenvalues by

)\]<)\2=0<)\,3.

The qualitative behavior of the Maslov index in this case is similar to the example on R? in Section 5. The values of the Maslov are shown
in the table below. The Maslov index in this case is computed using the Maslov angle, and this Maslov index is denoted by Maslov(x, A).

A )\.<)\.] )L]<)\.<)\.2 )\.2<)\.<)\.3 )\.>)\.3
Maslov(k, A) 0 1 2 3

Note that the Maslov index in each region predicts the number of eigenvalues of .# in each A interval.

A region A< A A< Ay A< A3 A < Atdee
#Eigs(¥) 0 1 2 3

It is immediate from this table that

Maslov®mdime — |im Maslov(k, A) = 2.
r—07F
The operator .# has exactly one negative eigenvalue in this case. Our calculations indicate that this is the case for all the unimodal
homoclinic orbits. It is easy to show analytically that the Maslov index of a unimodal homoclinic orbit is greater than or equal to 2. An
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Fig. 9. Evans function and Maslov index as a function of A for the explicit unimodal solitary wave solution when P = % ¢ = 1and g = 1. In this case, the Maslov index is
A-growing.

elementary proof is given in [20]. This result has implications for the stability of the solitary wave solutions of KdV5 and it is discussed in
Section 15.

To test how accurately the Lagrangian-Grassmannian is preserved by the numerical scheme, the values of

I1=UAU and L=wAU (14.9)

are computed as a function of x. In these calculations the standard explicit fourth-order Runge-Kutta algorithm is used. The value of I; is
shown in Fig. 10. The error is of the order of machine accuracy, except for a small region around zero, but the error there is still exceptionally
small. Concerning I, it is in fact exactly preserved, even numerically: if I, is below machine accuracy, then it remains so.

Using Proposition 9 and the proofin [20], it follows that the KdV5 system satisfies Hypothesis 8 and therefore D(A) — 1 and the Maslov
index tends to 0 as . — —oo.

15. Spectrum of .# and the stability of solitary waves for KdV5

One of the intriguing properties of the Maslov index is the connection between the number of eigenvalues in subsets of the A space,
the Maslov index and the stability of solitary waves. We know that the Maslov index counts the eigenvalues of .# and it turns out that this
number plays a role in stability results.

For KdV5 the connection between stability and the Maslov index is not obvious. For unimodal solitary-wave solutions of KdV5, Kodama
& Pelinovsky [30] have studied this connection and they show the following result. Suppose the following integral exists

N(c,P) = / é(x, c, P)’dx,
R
and is a differentiable function of c, and define

. ON
0 if—(1,P) <0
F= ac
.. ON
1 if —(1,P) > 0.
ac
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Fig. 10. The decomposability of a 2-form is equivalent to Iy = 0 where I; is defined in (14.9). The upper figure shows the logarithm of the difference between a(x) and its
limit a., and the lower figure shows the logarithm of the value of I; whenqg = 1,P = % Ax = .01 and A = —10 The fast and irregular oscillations are associated with
round-off errors.

The functional N(c, P) is sometimes called the momentum of the solitary wave. If ¢ = 1, it is proved by Lewandosky [39] that r = 1 for
all admissible P.

In [30]itis argued (see Proposition 3.8 there) that a unimodal solitary wave is stableifr = +1and #.#~ = 1, where #.#~ is the number
of negative eigenvalues of .#. This observation is consistent with the theory of [33] where instability results for a class of unimodal solitary
waves were obtained.

15.1. Stability of two-pulse solitary waves

More refined results on the stability of two-pulse solitary waves were obtained by Chugunova & Pelinovsky [40]. Suppose that L has only
simple eigenvalues except a double eigenvalue at 0 and suppose (l P) # 0.In[40] it is proved for symmetric solitary wave solutions
that

Nuynse = #2~ —1 — Ny,

imag?

where N, is the number of eigenvalues with strictly positive real part of L and Ningg

with negative Krein signature. Using the formula #.¢~ = Maslov°medinic _ 1 gjves

is the number of pure imaginary eigenvalues of L

homoclinic —
Nynst = Maslov —1—-r— Nimag.

It is immediate from this formula that if N;,,,, = 0 and Maslov"™m°linic = 2 then the basic state is stable if 9 > 0 and unstable if $* < 0.

Using the classification of Buffoni, Champneys & Toland [36], a two-pulse solitary wave has the classification 2(¢) where £ is a natural
number. In [41], it is found numerically that two-pulse solutions have the following formula for the Maslov index

Maslov (15.1)

homoclinic __ |3 if £ is even
14 if¢isodd.

We can make several observations using this formula for the Maslov index of two-pulse homoclinic orbits. Suppose r = +1, then

; 1—N_ if ¢ is even
_ homoclinic - imag
Nunse = Maslov =27 Ningg = {2 Ningg if € is odd.
We have the immediate observation that a necessary condition for a 2-pulse homoclinic orbit to be stable is Nipngg > 0.From the parity of
Nipge» We have Nype = 1and N, = 0 when [is even and the solitary wave is unstable. When [ is odd, the parity of N, is not sufficient

tc;mcilgtermme the stability of the solitary wave.

Buryak & Champneys [42] used a completely different method to study stability and found that 2-pulse solitary waves are stable if £
is odd and unstable if £ is even, assuming that r = 1. This is consistent with the value we found for the Maslov index. When [ is odd, the
stability of the solitary wave is equivalent to N;,,, = 2.

The Maslov index does not give any information about the purely imaginary eigenvalues, and so to determine their number, a calculation
of the spectral problem is necessary. Some results on this are reported by Chardard [23]. There it is found that when [ is odd, there are
eigenvalues with a non-zero imaginary part, but they appear to have very small real parts. Further results are necessary to be certain about
the spectral stability of 2-pulse solitary waves when [ is odd.

One way to check whether the real part of a complex eigenvalue is nonzero is to use the formula (for the case ¢ = 1)

tmag

+oo
dxlu(x)|* dx. (15.2)

Re(h) = —
M=
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Here X is the complex eigenvalue associated with the stability exponent and u is the associated eigenmode:

d —~
= (Uxorx — Pitx + cu — 2¢p 1) = Aut. (15.3)

The formula (15.2) is derived by multiplying (15.3) by the complex conjugate of u(-) and integrating over R:

Mlul? /|u| St /¢uxu—f|u| ot /¢ <uxu—uux>—/|u| ¢x+1f¢lm<uxu)

In spite of the simplicity of the formula (15.2) there is not much that one can say in general. If qb(x) is an even function then d)x is an odd
function. Then it is immediate that |u(x)|2 even implies that Re(A) = 0. However, this is a very special case.

16. A model PDE for long-wave-short-wave resonance

In this section the Maslov index is computed for a class of solitary waves which arise in a model PDE for long-wave-short-wave
(LW-SW) resonance (cf. Kawahara et al. [43], Ma [44], Benilov & Burtsev [45], Latifi & Leon [46]). The LW-SW equations are a coupled
system with one equation of nonlinear Schrédinger type and the other of KdV type. A typical form is

Er = ((Ew + pE — VE)
pr = d(pwx — Cp + 3p° + |E]),

were p(x, t) is real valued, E (x, t) is complex valued, and c, v are considered to be positive real parameters. In real coordinates, E = u+iv
and p = w, the above equations can be written:

(16.1)

U = —Uxyx — VW + VU
Vr = Uyy + UW — VU (16.2)
Wy = Wyxx — CWyx + 6wwy + 2ully + 2Vvy.

This system can be expressed as a Hamiltonian system in the time direction. Let

1
o - 0
2 oo 2 2 1 2 2 2 2 1 2 2 2
K= 1 , HZ) = uf +v; + —w; —ww’ +u’ +v°) + —cw’ + v +v°) | dx
_5 0 0 - X X 2 X 2
0 0 —o
withZ = (u, v, w). Then the system becomes
Z = KVH(2),
since, with respect to an L, (R) inner product,
H, —2Uy, — 2Uw + 2vUu
VH(Z) = (HU) = —2Uy — 20W + 2VV
H, — Wy + cw — 3w? — u? — v?

However, we will not emphasize this property since it is the spatial Hamiltonian structure that is associated with the Maslov index. Solitary
waves satisfy the steady equations

—2Uy — 2uw +2vu =0
—2U — 20w +2vv =0 (16.3)
— Wy + cw — 3w? — u? — v? = constant,

where the signs and coefficients are modified to ensure that they are the Euler-Lagrange equation associated with the Hamiltonian function
H(Z). Exact solutions of this problem are known [44]; for example,

u(x) = Asech(+/vx), v(x)=0 and w(x) = 2vsech’(\/vX), (16.4)

with constant = 0 and A2 = 2v (¢ — 4v), and the existence condition ¢ — 4v > 0.
To study the Maslov index of these solutions, linearize the steady equations about the basic solitary wave and introduce a spectral
parameter: LZ = AZ with L = D*H (Z) Written out, this equation is

—2Uy — 2Wu — 2Uw + 2vu = Au
—2U — 2W0 — 20w + 2vv = AV (16.5)
— Wy + cw — 6WwW — 2Uu — 20V = Aw.

When v = 0 this system decouples into a second order equation for v, and a fourth order coupled system for u, w,

—2Uy — 20U — 2Uw + 2vu = Au (16.6)
— Wy + CW — 6w — 20U = Aw. :

The decoupled equation for v is then
— 2Ux — 2WV + 2vv = Av. (16.7)
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Fig. 11. Long-wave-short-wave problem for the parameters c = 1, v = 0.2. Top: Maslov index as a function of A. Bottom: Evans function as a function of 1. The Maslov
index is A-decreasing.

This latter system can be analyzed completely and the result in given in Appendix D.
The fourth-order system for u, w (16.6) can be written as a standard Hamiltonian ODE in the form (1.2) with n = 2 by taking

U A —2v 4+ 2W(x) 20(x) 0 0
" 20 A—c+6b(x) 0 0
ux, 1) = o | B(x, 1) = 0 0 1 0
Wx 0 0 % 1

The essential spectrum for this equation is
Oess={A€R:A>2vand X >c}.

Adding the condition that ¢ > 4v, the system at infinity is hyperbolic for all A € R such that A < 2v.
The Maslov index of the 4 x 4 subsystem is computed for the case c = 1 and v = 0.2 and the results are shown, along with the
associated Evans function, in Fig. 11 and tabulated in the table below, where A1 < A, = 0 < A3 are the three roots of the Evans function.

A )\.<)\.1 )\.1<)\‘<)\‘2 )\.2<)\‘<)\‘3 )\>)\3
Maslov(U™, E5.) 0 —1 =2 -3

17. A non-monotone Maslov index

In the LW-SW system and the KdV5 equation, the Maslov index is a monotone function of A. (Note however that it is not a monotone
function of x.) Here we show an example where the Maslov index is not a monotone function of A. It is a slight modification of the LW-SW
resonance equations. In this case the correlation between the number of roots of the Evans function and the value of the Maslov index is
no longer apparent. Look at the eigenvalue problem

u\ _, (u . u\ [ —2uy — 20(X)u + 2u(x)w + 2vu
L <w> = (w) » withL <w> " < Wy — CW +6WX)w +2ux)u )’ (17.1)
withc > 4v > 0,
U(x) = Asech(yv/vx) and W(x) = 2vsech?(/vx)

with A2 = 2v(c — 4v), and the requirement ¢ > 4v > 0.
The spectral problem associated to this operator can be expressed in the form (1.2) with n = 2,

u A —2v 4+ 2W(x) 21(x) 0 0
w 20(x) —A—c+6Wwkx 0 0
= = 1
u(x) 2u, |’ and B(x, 1) 0 0 T,
Wx 0 0 5 1

The essential spectrum of L consists of

] — o0, —c]U [2v, +00l.
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Fig. 12. Plot of the Maslov index for the non-monotone example (17.1) for the case c = 1and v = 0.21. Upper figure shows the Maslov index and the lower figure the
Evans function.

The essential spectrum is unbounded from above and below, hence a Morse index cannot be defined for L. However, we will still be able
to compute a Maslov index. The key property that leads to non-monotonicity is that the matrix 9, B(x, A) is not semi-definite: the matrix
0, B(x, A) has eigenvalues {0, 0, —1, +1} and so is not semi-definite.

Results for the case c = 1 and v = 0.21 are tabulated below and shown in Fig. 12. In this case there are five eigenvalues, but there is
no longer a correlation between the Maslov index and the number of eigenvalues in a subset of A.

A —c 0 2v
D) +o0  + - + 0 — + — —00
Maslov(X) -4 -3 =2 -1 -2 -3

18. Concluding remarks

We have only just scratched the surface of the implications of the Maslov index for homoclinic orbits and solitary waves. Other
important questions for Hamiltonian systems on four-dimensional phase space are (a) the connection between transversality of the
homoclinic orbit and the parity of the Maslov index, (b) the jump of the Maslov index at bifurcations, (¢) whether the angles «; and
k3 in the decomposition x = k1 + k3, contain other useful information, (d) the role of purely imaginary eigenvalues in the stability of
solitary waves in KdV5, and (e) the Maslov index of multi-pulse homoclinic orbits. The latter question is addressed in [41].

The extension of the Maslov index of homoclinic orbits to phase space with dimension greater than four is straightforward in principle
but there are some differences in detail. First, the dimension of the basic manifolds ( A "(R2"~), RPF%n~"!, G,(R2"), A(n), A'(n)) jumps a
lot when n goes from 2 to 3.

Manifold  A°(R®) RPY® G3R®) A(3) A'(3)
Dimension 20 19 9 6 5

In this table, RP' is the projectification of A 3 (R®). The biggest change in the numerics is the difficulty due to the jump in dimension
of the Lagrangian-Grassmannian. Whereas it is 3-dimensional in the case n = 2, it jumps to double that dimension when n = 3. The
details of the theory and numerics for n > 3 are given in Part 2 [3].

Appendix A. Plus and minus subspaces in A 2(]R“)

Consider R* with the standard symplectic and volume forms. Let V = span{£;, &,} be a two-dimensional oriented subspace of R*.

An oriented subspace is defined as follows. A subspace is an equivalence class of bases; that is, span{&1, &} and span{n1, .} represent
the same subspace if and only if there is an invertible 2 x 2 matrix m such that [£1|&;] = [11|n2]m. A subspace is oriented if m is restricted
to have positive determinant. The oriented subspace span{&1, &,} has one of three types

plus subspace ifonEgNE >0
Lagrangian subspace ifwo A& A& =0
minus subspace ifoNE NE <.

Proposition 10. The sign of w A U is an invariant of (3.3).
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Use Proposition 2 to conclude that
® A U(x) = constant,

along solutions of (3.3).

There is an interesting connection between the Krein signature and the above classification of oriented subspaces. The Krein signature
is a sign which is associated with purely imaginary eigenvalues (in the linearization about an equilibrium) or Floquet multipliers (in
the linearization about a periodic orbit). Consider the case of a simple purely imaginary eigenvalue iv, v > 0. Its complex eigenvector
¢ = & + i&; satisfies

B =iv)¢.
The Krein signature is defined as the sign of

¢, ¢) = 20&, &1).

Now use the identity (J&, v) = [, & AV],, Vv e R toobtain
i, ¢)vol = 2(J&,, &1)vol = [[@, & A &1 Iy vol = —[[w, & A& pvol = @ A A&,

This observation also emphasizes the fact that a choice of orientation underlies the definition of the Krein signature.

Appendix B. A spectral problem with sech? potential

This appendix establishes the basic properties of the ODE eigenvalue problem

dw + 12sech’x ¢ = k §, (B.1)

in the set ¥ := {k € R | k > 0}. The solutions of this ODE can be determined explicitly. The eigenvalues are x = 1,4, 9. Forall k €
2\ {1, 4, 9}, the two functions

2 3
b (x, k) = eTVKx (iao + a; tanh(x) + a, tanh(x) + tanh(x)) , (B.2)
are linearly independent, where
1
00:£(4—K), ap = -2« —3), (12:—«/1?.
15 5
The eigenvalues can be verified by explicit calculation. That x = 1, 4, 9 are the only eigenvalues in .#, and that ¢* are linearly

independent is verified by computing the Wronskian
ot ¢
W (x, k) = det _1.
() [qs: o
It is easily verified that Wy, = 0 and so W (x, «) is independent of x. Evaluate atx = 0
Qo

W(0, k) = det [01 ok a +aoﬁ] = 2ap(a; + apv/x).

Substituting for ay and ay,

2
W, k) = Eﬁ(l( — Dk —4) (K —9).

Hence ¢* are linearly independent for all « € .7 \ {1, 4, 9}.
The eigenfunctions are
¢(x, 1) = sech(x)(4 — 5sech®(x)), whenk =1
¢(x, 4) = tanh(x) sech®(x), whenkx =4
¢(x,9) = sech®(x), whenk =9.

modulo an arbitrary multiplicative constant.
Appendix C. Attractivity of the Lagrangian-Grassmannian A (2)

One of the advantages of subtracting off the growth rate at infinity in the equations on /\ Z(R“), as in (12.1), is that the Lagrangian-
Grassmannian becomes an attracting invariant manifold. When A(2) is attractive, one has greater freedom in choosing the numerical
integration scheme.

To prove attractivity, consider the integration of the 2-form representing the unstable subspace U™ (x, 1)

d
SUt =AUt Ut e AR —L<x<+L
dx

Introduce the transformation
Ut (x, 2) = e P* U (x, 1)



1866 F. Chardard et al. / Physica D 238 (2009) 1841-1867

where o, (1) is the sum of the eigenvalues of A, (1) with positive real part. Then U satisfies

d~ .
CTU+ =[A?x, 1) —o (WU —L<x <L (C1)
X

The Lagrangian-Grassmannian is the
U'AU =0 and oAU =0.
When evaluated on the differential Eq. (C.1) these invariants satisfy
~ d~y ~ =~ d~
—U AU = U AU 40 AT
dx dx dx
AU AU +U AAPU" — 20,0 AUT
Trace(A) 'ﬁ+ A ﬁ+ — 204 ﬁ+ A ﬁ+

= —20‘+ G+ A\ ﬁ+,

since Trace(A) = 0. A similar calculation with ® A U yields

d ~ ~ ~
20N U =0AA? —o DUT = AP0 AU —0, 0 AU = -0, wAU",
X
using the fact that A%’ @ = 0, which is proved in [20]. This proves that
U AU ()= e 20U AU and @AU (x) = e " oAU , forx> —L.
x=—L x=—L

The eigenvalue o is real and positive. Hence when integrating the unstable subspace U' along the Lagrangian-Grassmannian, both

U AU ando AU" (x) are exponentially attracted to the zero set. Therefore a special integrator is not required for maintaining the
constraints; a standard Runge-Kutta algorithm is quite satisfactory.

Appendix D. The reduced eigenvalue problem associated with LW-SW equations
The two-dimensional ODE (16.7) that arises in the reduced problem for LW-SW resonance can be written in the form
Ve + 2V sech?(Vvx) v = (v - %k) v.
ODE:s of this type can be solved explicitly as noted in Appendix B. The essential spectrum is the semi-infinite interval o,s (L) = [2v, +00).

Now suppose that A < 2v. Then the system at infinity is hyperbolic and one can explicitly construct the solutions (v*, v~) which give the
solutions for the stable and unstable subspace

A
vE(x A) = eV (Fp + tanh(VX), p=,/1- o
v

The Evans function can be obtained from

vT(x;A) v (X A) 5 A A
D()) = det ’ _ = 2u+/v - 1)=——,/1— —.
@) [vi wn vl T Nt =D ==-p 20
The Maslov index is
1 ifA<0
Maslov(}) = {0 if0 < A < 2v.
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