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framework, and develop numerical algorithms to compute them. In addition, a new numerical approach
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1. Introduction

Hamiltonian evolution equations in one space dimension, such
as the nonlinear Schrédinger (NLS) equation, the family of nth or-
der Korteweg-de Vries (KdV) equations, and longwave-shortwave
resonance (LW-SW) equations, have the property that their steady
part is a finite-dimensional Hamiltonian system. For such systems,
solitary wave solutions can be characterized as homoclinic orbits
of a Hamiltonian ordinary differential equation (ODE). The spec-
tral problem associated with the linearization about a given ho-
moclinic orbit, in the time-dependent equations, then leads to a
parameter-dependent family of linear Hamiltonian systems. The
advantage of these Hamiltonian structures is that the linear and
nonlinear Hamiltonian systems have global geometric properties
that aid in proving the existence of the basic solitary wave and
in understanding its stability as a solution of the time-dependent
equation. Our interest in this paper is in a particular geometric in-
variant — the Maslov index of homoclinic orbits. This paper is a
continuation of Chardard et al. [ 1] (hereafter Part 1). It extends the
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theory of Jones [2], Bose & Jones [3] and Part 1 to cases where the
phase space of the steady Hamiltonian ODE has dimension six or
greater.

Once the solitary wave solution is known, analytically or
numerically, it is the linearization about that solitary wave
which encodes the Maslov index. Therefore, the starting point
for developing the theory is the following class of parameter-
dependent Hamiltonian systems

Jwy =Bx,A)w, wWeR™ xcR, A€R, (1.1)
where ] is the standard symplectic operator on R*"
0 I

and B(x, 1) is a symmetric matrix depending smoothly on x and A.
Let

A(x, ) =] 'B(x, A). (1.3)

The fact that A(x, 1) is obtained from the linearization about a
solitary wave suggests the following asymptotic property. It is
assumed throughout the paper that

A (X)) = liriP A, 1), (1.4)

and that A, (A) is strictly hyperbolic for an open set of A values
that includes 0.
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The Maslov index is a winding number associated with paths of
Lagrangian planes of solutions of (1.1), in particular the unstable
space, i.e. the space of solutions which decays at —oo when A, (1)
is hyperbolic. We present formulae for different representations
of the Maslov index for Lagrangian planes on A"(R?") for any
n, and use the numerical algorithm of Part 1 to compute it. It
works in principle in any dimension. However, since we use
an exterior algebra representation, the dimension of A"(R?")
increases rapidly with n and so the algorithm is most effective for
low-dimensional systems. In this paper formulae are presented
for any dimension and numerical results for a phase space of
dimension six.

In addition, a new algorithm based on a discrete QR splitting is
proposed. When n = 2 the exterior algebra frame is clearly faster
than the QR method; its computation time is about the same when
n = 3 but for n > 3 the QR method appears to be faster.

The computational framework for the Maslov index is illus-
trated by application to three examples. The first example is the
fully coupled longwave-shortwave resonance equation from the
theory of water waves, which consists of an NLS equation cou-
pled to a KdV equation, generalizing results from [4,1]. The sec-
ond example is a sixth-order system that arises in the linearization
about the coupled reaction-diffusion equations. The third example
is the seventh-order KdV equation, which has the property that the
steady part is a Hamiltonian system on a phase space of dimension
six, and extends the results on the fifth-order KdV in [1].

2. Linear Hamiltonian systems and Lagrangian subspaces

Let
W=[w| - |w,]eR™" (2.1)

where the linearly independent columns {wy, ..., w,} span an n-
dimensional subspace. This subspace is Lagrangian if

wiw = o0, (2.2)
or columnwise
Jwi,wj)) =0, Vi,j=1,...,n,

where (-, -) is a standard inner product on R?",
Now suppose the subspace (2.1) depends on (x, 1) and satisfies
the differential equation (1.1),

JW, = B(x, A)W. (2.3)
The differential equation preserves Lagrangian subspaces since
d

= (W'Jw) = —~W'BW + W'BW = 0.

Hence if the initial data W(x, 1)|x—x, is Lagrangian, the path
W(x, 1) is Lagrangian for all x > x.

A Lagrangian subspace can also be represented by a Lagrangian
frame [5]: a 2n x n matrix of rank n

U
W= (v) , (2.4)

where condition (2.2) requires the n x n matrices U and V to satisfy
vViu=Uu"v. (255)
This identity implies that

U—-iv(U+iv) =U0TU+ Vv

Hence if R = 4/UTU + VTV, which is well defined and symmetric
since the argument is positive definite, then

Q=Q +iQ = (U+iV)R',

is unitary. The determinant of a unitary matrix lies on the unit
circle. It is this observation that leads to a definition of the Maslov
angle of a fixed Lagrangian subspace W,

W det[lU—iV]
= T (2.6)
det[U +iV]
For an (x, 1)-path of Lagrangian subspaces the angle is
oy detlU(x, 2) —iV(x, 1)] 27)

T det[U(x, 1) +iV(x, V)]

Suppose that W(x, A), for fixed A and a < x < b, is a smooth
path of Lagrangian subspaces. If the path is a loop: W(b, 1) =
W(a, )), then there is an integer associated with the path: the
number of times the induced path on S', e®* encircles the
origin. This integer is the Maslov index of the path

k(b,A) —k(a, A)

o (2.8)

Maslov(x) :=
When (1.1) is obtained from the linearization about a homoclinic
orbit, the Lagrangian subspace represents the stable or unstable
subspace of the linearization. Hence direct numerical integration
of (2.3) is unstable. The remedy for this is to integrate using
exterior algebra, or integrating using discrete or continuous
orthogonalization. The exterior algebra approach was developed
in [4,1] for the case of n = 2. Here the necessary details
for generalizing to n > 2 are sketched. The use of discrete
orthogonalization for computing the Maslov index is new, and the
details are given in Section 9.

3. Integrating (1.1) on exterior algebra spaces

Let ey, ... ey, be the standard basis for R?". Then
ke € (1,...,2n}},

is a basis for A "(R?). Any element Z € A "(R*") can be
expressed in terms of this basis. There is then a standard way to
construct the differential equation induced on A "(R?") by (1.1)
leading to

{ekl ARERNAY 'S |k1,..

Z,=A"(x.0)Z, Ze |\ "R, (3.9)

The principal issue is the construction of the matrix A™ [6,1]. In
this section a new construction of this matrix is given using the
multi-alternate product following [7]. The bi-alternate product is
now widely used in bifurcation theory (e.g. Govaerts [8]). There
is not much in the literature on the multi-alternate product, but
the basics of theory were worked out over 100 years ago by
Stéphanos [9,10].

The multi-alternate product of matrices is defined as follows.
Let E and F be two vector spaces. Let My, My, ..., My be linear
maps from E to F. Then, the kth-alternate product is a mapping

k k
(M1,M2,...,Mk)r—>M1®M2@---@Mk;/\ E—)/\ F,
defined by

MiOM; ©---OM@ Aay A--- Aay)

1
= — M(,(])al A\ MU(Z)az VANERIIVAN Ma(k)ak

!
k! s

where X is the set of permutations of {1, ..., k}. Let (eq, ..., e;)

and (fy, ..., f,) be bases of E and F. Then
ey Aooone,1<ij<---<ik<n} and

{fy Ao Afi 1<ii <o <ie=mj,
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are bases for /\k E and /\k F.The entries of the matrix of the multi-
alternate product in these bases is
(M1 (ORERNO) Mk) 1<ij<--<ig<n,
1<j1 < <jg=n
Mo)ipy; Mo(1)ig
Mo2)ip iy Mo@)ig iy

Mo (1))iy.k
(Mo (2))iy i

1

Mo )iy Mo (Mo (1)) i

The induced matrix A™ in terms of the multi-linear product is then

A =nAQIO---O).

A formula for the induced matrix, in terms of the standard basis for
A F(®2M), for any kis

(3.10)

(A(k)) 1<iy<--<ip=<2n,
1<j1<-<jk=2n

0 if Card({iy, ..., ik} U {1, ..., Jk}) > k+1
(=D"a; i {ip, s} = {in, ..o, it A1 -k

=1 (3.11)
D aiy (i i) =i
r=1

with VAW = (V U W) — (V N W). For numerical computations,
it is natural to use a mono-index implementation rather than a
multi-index one. Normally, the CX, multi-indexes are numbered
following the lexical ordering: let 1 < i; < --- < i < 2nand
1<ji1 <--- <jg <2n.ltissaid that

{i1, ... ik} < {j1,...,jk} ifandonly if o | iy

=j1, . dgm1 =Jo—rand iy < jg.

An explicit expression for A™ in the standard basis when n = 3 is
given in the Appendix of [11].

3.1. Reversibility and the multi-alternate product

Another advantage of the multi-alternate product is that it
provides the natural setting for constructing the induced reversors
on A "(R?") when A(x, 1) is reversible.

Suppose that the linear system (1.1) is reversible: there exists a
linear transformation R : R?" — R2" such that

R] = —JR and

RB(—x,2.) =B(x, VR, R '=R, (3.12)
or in terms of A(x, 1) in (1.3)

RA(—x, 1) = —A(x, M)R. (3.13)

For a linear operator on R?" define the operation of inducing a
mapping on A" (R?") by

N'@) =A". (3.14)
It is immediate from the definition that
/\"A=x. 1)) = A" (=, 2. (3.15)

Since reversibility will not play a role in this paper, restrict
attention to the case n = 2 to illustrate the construction of induced
reversor. An application of the Maslov index where reversibility is
important is presented in [12].

The bialternate has the following interesting property (cf.
Proposition 14 on page 40 of [7])

N'@a =000 \'®@oo. (3.16)

From this identity and (3.15)
AP (1) = — \ (ACx 1)
A ®R7AKVR)  (using (3.13)and R = R)

= ROR ™ A\ Ax)ROR) (using (3.16))
= ROR AP HROR),

from which it follows that

AP, DROR) = —(RORAZP (—x, 1). (3.17)

Hence if A(x, ) is reversible with reversor R, the induced matrix
A® (x, 1) is reversible with reversor R © R. The generalization to
n > 2 follows a similar argument.

4. Maslov angle — a formula on A" (R?")

The Maslov angle for a path of Lagrangian subspaces is defined
in (2.7) in terms of a Lagrangian plane. For the computation, a
formula in terms of the exterior algebra representation is needed.
It is derived as follows.

A Lagrangian frame can be partitioned into two n x n blocks as
in (2.4) and it can be represented in terms of its columns

W=[w; | - |wy], with(w;,w;) =0, fori,j=1,...,n

The exterior algebra representation of the Lagrangian plane is then
just obtained by the mapping

n
(Wi, ..., W) > Wi A AW, € /\(RZ“).
Denote the exterior algebra representation by
Z=wW; A - AWy,
and orient R?" with the standard orientation: vol = e; A - - - A es,.

Proposition 1. There exists a constant n-form C,

n
C=C, +iC,, withC,, G € /\(RZ"),
such that

det[U — iV]vol = CA Z.

It follows from this proposition that there exists a scalar
complex-valued function K such that C A Z = Kvol. A formula for
the Maslov angle is then immediate.

Proposition 2.
el = K/K.

It remains to prove Proposition 1. The proof is by explicit
construction. Let

c=e—ie, j=1,...,n
Then
1\ (u
U—iVv = (_il) (v) =[er ||l [wy |-+ | W]
(€1, wy) (€1, Wy)
= . '.. E N (4'1)
<cn7 Wl) (cns wﬂ)

and so, using the induced inner product' on /\"(RZ”) (see
Appendix of [4])

1 A real inner product is used throughout the paper, with complex conjugation
inserted as appropriate.
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(€1, wy) (€1, wy)
det[U — iV]vol = det vol
(Cn, Wl) (cns Wn>
=[ct A~ Acy, Z],vol.
This gives a formula for K,
K=[ciA---Ancy, 2],

It is not necessary to give an expression for C since in the
computations it is K that is needed. However, for completeness it
is given. Let C be an n-form satisfying
A AGAC=[cIA---ACH, CLA---ACy I, vol. (4.2)
Then
det[U — iV]vol = C A Z.

The n-form Cis in fact the Hodge star of ¢; A - - - A ¢, although the
details of that characterization are not needed.

This formula generalizes the formula for the Maslov angle on
A\ *(R*), which is given in [1].

4.1. The Maslov angle on A\ *(RS)

A special case of great interest is paths of Lagrangian subspaces
on R®. The above formula can be given an explicit form. On RS, with
the standard basis, the above vectors ¢y, . . ., ¢3 take the form

i ACAC3 = (e —iJer) A (ex —iJex) A (e3 — iJes)
= (e; —ieg) A (e; —ies) A (e3 — ieg),
or
CIACAC; =€ Ae;Ae;—e| AesAeg
+e,ANe;Ane; —e3 AeyAes
—ie; Aey ANegt+ie; Ae3Aes
—iey Ae3 Aey+ies Aes A eg.

Now take a standard lexical ordering for the 20-dimensional basis

3
/\ (R®) = span{e; Ae; Aes,e; Ae; Aey,. ..,
e; Ne; N\ eg, es N\ €5 /\96}, (43)
and express an arbitrary element Z € A\ 3(RG) in the form Z =
Zi,j,k Pijke,» A € N €. Then
K = [[c; Aca A3, Z]l3 = P13 — Pisg + Pags — P345 — iP12g
+iP135 — iPy34 + iPys6, (44)
and so the expression for the Maslov angle is
i _ P123 — Pisg + Pags — P3as — iP12s + iP135 — iPa34 + iPase
P123 — Pisg + Pagg — P3gs + iP1ag — iP13s + iPa3q — iPase

This formula is the basic tool for computing the Maslov index in
the examples in Sections 6-8.
In this case, definition (4.2) gives

(4.5)

C=eNnesNe—€e Ne3ANe;+eiAe3ANe; —e; Aey Aeg
+i(esNesnes —e, ANegANe;+ e Aes Aeg
—e; Aey Aes).

4.2. Maslov angle on A "(R*")

In higher dimension, the general formula is [7]

K = det(U — iV)
> -
= Z S C Pl'l
({iq...in},1)

i1 <--<ip
{ig,n irip4q—n,....in—n}=({1,...n}

..... in»

foranelementZ € A "(R?") represented in terms of the standard
basis:

Z= Z Pj]mjneh JARERRAN - N
Ji-dn

5. Integrating on the Lagrangian Grassmannian

The strategy for numerical computation of paths of Lagrangian
subspaces in the exterior algebra representation for n > 2 is
similar to the case of n = 2. The major change is the jump
in dimension. For example, the dimension of each of the basic
manifolds for the case n = 3 is shown in the table below.

Manifold | A°RS[ RPY | G3RS)| AG3) | A'(3)
Dimension | 20 19 9 6 5

In this table A(3) is the Lagrangian Grassmannian and A'(3) is
the Maslov cycle [13]. The vector space /\ 3 (R®) has dimension 20,
and we can take the standard lexical basis (4.3) and an element of
A 2(R®) can be expressed in the form

Z:ZP,-jke,-/\ej/\ek, l<]<k
i,k

The formula for the Maslov angle is given in Eq. (4.5). For
computing the Maslov index in the case where the solitary wave
is approximated by a periodic orbit, the algorithm is the same as
in the case of n = 2. Simply integrate the unstable subspace in
the induced system on /\3(R6) in the interval —L < x < +L
with initial condition ¢ T (1), where ¢ T (1) is the representation on
A 3 (R®) of the unstable subspace at infinity. « (x, 1) is computed
using (4.5) and then the Maslov index is returned at x = L using
(2.8). The numerical methods have been presented in previous
papers: approximation of the solitary wave by a limiting periodic
wave [14,15], and using an intersection theory definition of the
Maslov index [1,12,16,4].

There is still much to understand about A(3). For example, we
do not have useful representations of G3(R®) or A(3) on A 3(JRG).
Such representations would be advantageous for proving that
A(3) is an invariant manifold for (3.9), and for understanding the
numerical properties of the induced ODE on A(3). Some results
about A\ 3(Rﬁ) and A(3) can be found in Chapter 8 of book [17].
Nevertheless, the Maslov index is still easily computable when
n = 3 and the calculations show evidence of robustness.

6. A model PDE for longwave-shortwave resonance

In this section, the Maslov index is computed for a class of
solitary waves which arise in a model PDE for longwave-shortwave
resonance (cf. [18-21]). The equations are a coupled system with
one equation of nonlinear Schrédinger type and the other of KdV
type. A typical form is

E; = i(Exx + pE — VE)
pr = Ox(pxe — cp + 30" + [EP),
where p(x, t) is real valued, E(x, t) is complex valued, and c, v

are considered to be positive real parameters. In real coordinates,
E = u+iv and p = w, the above equations can be written as

(6.1)

U = —Uyxy — VW + VYV
Vr = Uy + Uw — v (6.2)
W = Wyxx — CWyx + 6wwy + 2ully + 2Vvy.



1338 F. Chardard et al. / Physica D 240 (2011) 1334-1344

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

_15 . . . . . . . .
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Fig. 1. Computation for the longwave-shortwave equations for the parameter
values c = 1and v = 0.2. Top: the Maslov index, Bottom: the Evans function.

A simplified n = 2 version of this example was considered in [1].
Here the full n = 3 example is studied.
Solitary waves satisfy the steady equations

—2Uy — 2uw +2vu =20
—2Ux — 2vw +2vv =0 (6.3)
—Wyx + cw — 3w? — u? — v? = constant,

and [19] has shown that there exist exact solutions

u(x) = A sech(y/vx), v(x) =0 and
w(x) = 2v sech?(v/v x), (6.4)
with constant = 0 and A2 = 2v(c — 4v), and the existence

condition ¢ — 4v > 0.

To study the Maslov index of these solutions, linearize the
steady equations about the basic solitary wave and introduce a
spectral parameter,

— Uy — 20U — 2Uw + 2vu = Au
—2U — 2WV — 20w + 2vv = Av (6.5)
— Wy + cw — 6WWw — 2uu — 20V = Aw.

When v = 0 this system decouples into a second-order equation
for v (see Appendix of [1] for analysis of the reduced v equation),
and a fourth-order coupled system for u, w, which can be written
as a standard Hamiltonian ODE in the form (1.1) with n = 2 by
taking

u
w
wix ) =15, |
Wy
A —2v 4 2Ww(x) 20(x) 0 0
2U A—c+6wkx 0 0
B(x, 4) = 0 0 L
2
0 0 0 1

The Maslov index is computed for the casec = 1and v = 0.2
in [1] and the results are shown, along with the Evans function, in
Fig. 1 and tabulated in the table below, where A; < A; = 0 < A3
are the three roots of the Evans function.

A )\,<)\.1 )u]<)x<)u2 )\‘2<k<)u3 )\>)\.3
Maslov 0 -1 -2 -3
(U*,E)

Now, consider the case of the full six-dimensional system
(6.5). It can be reformulated in the form (1.1) by taking w =

4 *

ot ]

IN
N
L
|
o
[ee]
|
o
o
|
o
N
|
o
N
ol
o
N

o = N W
U
L

4k 4
2t 4
3+ |
_4 . . . . . . . .

Fig. 2. Maslov index and Evans function as functions of A associated to the 6 x 6
system (6.5) whenv =0.2andc = 1.

(u7 U7 w’ 2uX7 zvm wx)v and

—2v+A+20 0 21l 0 0 0
0 20+ A+20 2D 0 0 0
2 29 A—c+6w 0 0 0
1
Bx,\)=]0 0 0 3 0 0
1
0 0 0 0 3 0
0 0 0 0 0 1

When v = 0 the system decouples into two subsystems as noted
above. In this section, the full system will be integrated on A\ 3 (R®)
for the decoupled case. This way the calculation can be checked
against the previous calculation on R4,

When a system decouples into two subsystems, the Evans
function of the full system is the product of two subsystems and
the Maslov index of the full system is the sum of the Maslov
indexes of the two subsystems Maslov?? @ Maslov*” = Maslov®P.
Hence this formula provides a check on the calculations which are
summarized below.

A A< —1 -1 < 0<A A >~0.19
A <0 <= 0.19

Maslov?? 0 0 -1 -1

Maslov4? 0 -1 -2 -3

Maslov®’ 0 -1 -3 —4

In the calculations reported here, the Maslov angle in (4.5) and
the algorithm in [1] are used.

Numerical results are presented in Fig. 2. The results are in
complete agreement with the product of the Evans function of the
subsystems and the sum of the Maslov indices of the subsystems.

As noted in Appendix D of [1] the Maslov index for the reduced
systemis 0 if A < 0 and —1 if A > 0. Adding these values to the
Maslov indices in Fig. 1 agrees with the Maslov indices in Fig. 2.
Note also that the Evans function has a double zero at A = 0 as
expected.

7. A triply coupled reaction-diffusion equation

Consider the coupled system of reaction-diffusion equations

du _ 4u + 6u® — c1(u — v) + c3( u)

ou _ou _ — w —

At ox ! ’

d 32

8—1;:a—;—4v+6v2+c1(u—v)—cz(v—w) (7.1)
dw  w

a:ﬁ—4w—|—6w2—|—Cz(v—w)—Ca(IU—u)v
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where ¢ = (cy, ¢3, €3), the coupling constant, is a non-zero vector-
valued real parameter. Suppose that ¢ is chosen so that the trivial
solution of (7.1) is stable. This example generalizes the study of
steady reaction-diffusion equations with n = 2 in [3,1].

This system has the exact steady solitary wave solution

u=v=w:=1ux) = sech?(x).

Linearizing (7.1) about the basic state U and taking perturbations
of the form

e (u(x, 1), v(x, 1), w(x, 1)),

leads to the coupled ODE eigenvalue problem

Uy = (A+4+c+c+c3— 12U(@)u
—CU—CV—C3Ww

U = (A+4+c1+c+c3— 12ux)v

(7.2)
—C1U—CVv—Cw

Wy = (A+4+c1+ 6 +c3— 12UX)w
—GU—CGQUV—Cw,

or

P = a(x, 2)p — Cp, (7.3)

where

a(x, 1) = A + 4 + Trace(C) — 12sech?(x),

and

u G € C3
p=1[v and C=(c1 ¢ ).
w C3 C

This eigenvalue problem can be solved explicitly. The matrix C
is symmetric and so it has three real eigenvalues. Denote them
by o1, 07, 03. Let T be the 3 x 3 matrix whose columns are the
eigenvectors of C. Hence

01 0 0
T'cT=|0 o, 0]}.
0 0 03

The eigenvalue problem (7.3) can be diagonalized. Let p = Tp, then
P satisfies

u a(x, \) — oy 0 0 u
(5) = |: 0 a(x, )\,) — 07 0 :| (5) .
w/ o, 0 0 alx,\) —o3 | \w

Using the result in Appendix B of [ 1] we can write down a formula
for X in the point spectrum. There are exactly nine eigenvalues in
the point spectrum,

)»j:-Cl—Cz—C3+0'j—3
)Lj+3:—C]—C2—C3+O'j j:1,2,3.
}\,j+5=—C1—C2—C3+O'j+5

The three eigenvalues of C satisfy det[cl — C] = O or
0% — (14 +3)0° + (€162 + 603 + €103 — ¢f
+ (¢} + ¢ +¢3 — 3c16263) = 0.

This polynomial can be factorized. Let T = Trace(C) = ¢y 4¢3 +C3.
Then the above polynomial factorizes to

(6 —1)(0* —y*) =0,
with

- — o

1
Y= 5 [(c1—)* 4+ (2 —3)” + (5 — C1)2]1/2 .

Hence the three o roots are

o1 =171, o1 =Y, o3 = —Y.
This eigenvalue problem can be written in the standard form
(1.1) by taking w = (u, v, w, uy, vy, wy) and Eq. (7.4) (Box I). The

matrix in (7.4) (see Box I) is Hamiltonian: JA is symmetric.

7.1. Calculations for the casec = c(1,1, 1)

Whenc; = ¢ = ¢3 = ctheny = 0and oy = 3c, and
o, = o3 = 0. Hence there are nine eigenvalues

{ : A=(=3-3c, -3¢, =3¢ +5,-3,0,5)},

with the first three having multiplicity two. Hence the number of
positive eigenvalues without multiplicity is 4, 3, 2, or 1 depending
on whetherc < —1,—1 < ¢ < 0,0 < c¢c < 5/30rc > 5/3
respectively. According to Lemma 6 of Part 1, the Maslov index at
) counts the eigenvalues with multiplicities greater than A, so the
Maslov index can be explicitly written down:

-1<c -1<c
<0 <0
Masloyhomoclinic 7 5 3 1

c c<-—1

7.2. Generalization to N-coupled reaction-diffusion equations

This model can be generalized to N-coupled reaction-diffusion
equations. Define

1 N—1 5 1 3
Vi = -2 ;Cj(uj — Uip1)” = v iy — )

Then the following system is a gradient reaction-diffusion system

8Llj 82uj 2 aV
- =<5 —4ut+bu+ —

- . J=1.....N, 75
ot o oy’ (7.3)

which generalizes (7.1) to N-coupled equations. The steady part
of this equation is a Hamiltonian system on a phase space of
dimension 2N. Taking u;(x) = sech? x as the basic state and
linearizing about it, the spectral problem can be explicitly solved in
terms of the eigenvalues of the matrix C. In addition, one can show
in general that there is always at least one unstable eigenvalue, for
any N. This follows because Trace(C) is always an eigenvalue of the
matrix C with eigenvector (1, ..., 1). Model (7.5) provides a useful
example for testing computational strategies for the Maslov index
of Hamiltonian systems with a very large dimension.

8. A seventh-order Korteweg-de Vries equation

The KdV equation
ut+uux+yuxxx:0’

can be generalized by including higher-order dispersion, particu-
larly if || < 1, leading to the fifth-order KdV equation

Ue + Ully + Y1 Unex + V2 Ui = 0.

By using a systematic procedure, KdV equations of any order can be
generated. When these KdV equations are derived from the water
wave problem, and a Hamiltonian approximation theory is used,
the resulting model equations are also Hamiltonian [22]. For many
of these KdV models, solitary wave solutions have been found, both
analytically (explicit solutions) and numerically.

In this section the Maslov index theory is applied to the
linearization about solitary waves of the seventh-order KdV
equation. There are several versions of the seventh-order KdV
equation in the literature (e.g. [22-24]). The version in [23] is
used here since it is Hamiltonian and has two exact solutions. The
general form of the equation, called KdV7, is

Ur + vuy + auuy + V1 Uxxx + V2 Uxxxxx + V3 Uxxxxoxx = 0»
y1v2 < 0.



(7.4)

[=NeNoNol o)
oo o ~—=0OO0

1
0
0
0
0
0
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0 0 0
0 0 0
0 0 0
Al 1) = fx,A) +c1+c3 —C —C3
—C1 f&xM)+a+e —C
—C3 —C f& A+ +c
where f(x, 1) = A + 4 — 12 sech?(x).

Box 1.

By scaling u, x and t, and using the condition y;), < 0, the KdV7
equation can be reduced to a PDE with two parameters

(8.6)

This KdV7 equation is a simplified version of the KdV7 equation
derived from the water wave problem in [22] (see page 384 in[22]).
Another version of the seventh-order KdV, reported in [24], is

U — Cly + Ully + Ugex — Usxxx T O Unxxxor = 0.

ur + aumux - bumuxxx + umuxxxxx + Usxxxor = 0,

withm > 1and b > 0. It has exact solutions but does not appear
to be Hamiltonian.

The KdV7 equation (8.6) can be represented in Hamiltonian
form

d (8H
= s ) (8.7)
with Hamiltonian functional
c 1 1 1 1
H(u) = ‘/R (5112 _ 61,[3 + Eui + Euix + Egu)zfxx> dx. (8.8)

Steady solutions of KdV7, denoted by ¢ (x), satisfy the sixth-order
ODE
1

O Prxxxxxx — Pxxxx + Gxx + 5@52 —cp=0. (8.9)
While no theory has been worked out yet for KDV7, we expect the
results for KDV5 mentioned in Part 1 linking the Maslov index to
the spectral stability problem to be extendable to the KDV7 case.

In what follows, we first describe two exact solitary wave
solutions and then compute their Maslov index.

8.1. Solitary wave solutions of KdV7

Solitary waves which are asymptotic to zero as x — =00,
correspond to homoclinic orbits of (8.9) that are homoclinic to the
origin. A necessary condition for the existence of homoclinic orbits
is hyperbolic eigenvalues in the system at infinity. Linearizing (8.9)
about the trivial solution and looking at exponential solutions of
the form e** gives the dispersion relation

A(p) =0 with A(p) == oub —u* 4+ u? —c. (8.10)

The roots of this polynomial are functions of ¢ and o, and they can
be classified by plotting the discriminant in the (o, ¢) plane. It is
shown in Fig. 3. The discriminant is determined by the condition

A(u) = A'(n) =0,
which results in
o%c (243c?0% + (1620 + 36)c + 9(4o — 1)) = 0. (8.11)
The solution set has two branches that meet at a cusp, and are given
by
90 —2 £ 2(1 — 30)%? 9c — 2 F2(1 — 3c)3/?
- 2702 7= 27¢2 '

The two representations of the branches are inverse functions of
each other.

Fig. 3. The discriminant for the dispersion relation (8.10), and the qualitative
position of the roots in the complex w-plane.

Let DT be the branch of the discriminant with ¢ > 0and D™ the
branch with ¢ > 0, as shown in Fig. 3. Then

90 — 2+ 2(1 —30)%?
2702

Dt=1{@,0): c=

9c — 2 F 2(1 — 3¢)3/?
o = .
27¢2

The cusp occurs at the point (o, c) = (%, %) and the crossing

of the o and ¢ axes occurs at (o, ¢) = (5,0) and (o, ¢) = (0, ).
At the cusp point, the polynomial (8.10) has a pair of triple roots at
u = =£1 since

1 11
mm:%M—W’me@:< ).

3 3’3
Along the line ¢ = 0 the polynomial (8.10) has two zero roots,
and four non-zero roots. The line ¢ = 0 is singular, since two

of the roots disappear to infinity. The linesc = 0,0 = 0
and the discriminant together divide the (o, ¢) plane into seven
regions, and in each of these regions the position of the u roots
is qualitatively the same. The main region of interest here is the
bounded region inside the discriminant and witho > Oandc > 0.
It is denoted by X in Fig. 3. In X, the roots of (8.10) are all real and
hyperbolic, as shown schematically in Fig. 3.

When (c, o) is in X, there are two explicit solitary wave
solutions of (8.9), discovered by [23]. The first one exists when

710000 2159

= ——- ~0.1523 and o = —— ~0.2159,
2159 10000

and the explicit solution is
¢ (x) = ag(sech®(kx) + sech?(kx)),

1039500 [ 25
aGg=——"—, k=,/——.
2159° 2159

(8.12)
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The other solution exists when

769 180000
o=——~0.3076 and c=
2500 7692

and the explicit solution is

519750 25
x) = ag sech®(kx), ag="—"—, k=, —.
o) =85 (). 05 = g2 V 1538

8.2. Maslov index of solitary waves of KdV7

~ 0.3044,

(8.13)

The Hessian of the Hamiltonian evaluated at a steady solution,
¢(x), can be expressed as

2
v Hpll = CU — UP — Uyx + Uyxxx — O Unxxxx-

Consider the following spectral problem:

V2 Hyu = L. (8.14)

This spectral problem is self-adjoint (in an appropriate Hilbert
space) with purely real spectrum, consisting of a finite number
of discrete eigenvalues and a branch of continuous spectrum. The
Maslov index, which is equivalent to the Morse index in this case,
can be used to count the discrete eigenvalues of this problem.

By using Legendre transform (see Appendix B of [7] for Legendre
transform in this context), the system (8.14) can be represented as
a linear Hamiltonian ODE.

Define
u
Uyx — O lUgyx
_ Uxx
W= Uy — Uyxx + O Usy
_uX
O Uxxx
Then W satisfies
W, = A(x, )W, with
0 0 0 0o -1 0
0 0 0 -1 -1 0
1
AR, A) = 0 0 0 0 0 ;
—A+c—¢ O 0 0 0 0
0 0 -1 0 0 0
0 -1 1 0 0 0

which is Hamiltonian, with respect to the standard symplectic
form, and reversible when ¢ (x) is an even function.

The theory for the Maslov index can now be applied to compute
the index of the two solitary waves (8.12) and (8.13). The results of
the computations are summarized in Figs. 4 and 5.

Qualitatively, the results are the same for the two solitary
waves. They are summarized in the following table.

A )\.<)\,1 )\.]<)\.<}\,2 )\.2<}\.<)\,3 )»>)\.3
Maslov 0 -1 -2 -3
(U, E)

The value of A, = O for both of the solitary waves. Hence, the
Maslov index of the two solitary waves is lim; _, o+ Maslov(Ut, ES )
= -2

Although the phase space dimension is larger, these Maslov
index results are very similar to the results for the single-pulse
solutions of the fifth-order KdV in [1].

9. Ortho-symplectic integration

Integration of the linear ODE (1.1) restricted to an exterior alge-
bra space is very effective and robust. However, the dimension of

‘
0 i
x
()
2 1t 1
>
o
& ol i
s
_37 L L L L L L L L L L
-035 -0.3 -025 -02 -0.15 -0 -005 O 005 01 0.5
A
0.08F ]
5 006 g
5
,5 0.04 1
g oo2f g
>
w 0
-0.02k ‘ ‘ A

. . . . . ! . .
-0.35 -0.3 -025 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.5
A

Fig. 4. Maslov index and Evans function of solution (8.12) of the seventh-order
Korteweg-de Vries equation.

2

3
- 0
<
>
o
g ol
g -
—4 | | | |
-0.5 -0.4 -0.3 -0.2 -0.1
A
0.2
5]
§ 0.1}
2
2
S 0
w
-0.1 I I I L
-0.5 -0.4 -0.3 -0.2 -0.1
A

Fig. 5. Maslov index and Evans function of solution (8.13) of the seventh-order
Korteweg-de Vries equation.

A" (R?*") equals the binomial coefficient which increases rapidly
with dimension. For higher-dimensional systems an alternative to
exterior algebra is continuous or discrete orthogonalization. Con-
tinuous orthogonalization has been shown to be very effective for
computing the Evans function for the linearization about solitary
waves [25,26], and continuous orthogonalization has been used in
the Hamiltonian context for computing Lyapunov exponents [27].
The purpose of this section is to report on some experiments on the
use of discrete orthogonalization for computing the Maslov index.
The numerical results on the computation of the Maslov index for
the solitary waves of KdV7 in Section 8 are repeated using orthog-
onalization.

Here the simplest form of orthogonalization is used, based on
the “economy QR” algorithm in MATLAB: at each step of numerical
integration, a QR factorization of the matrix W is computed. Given
W(x, 1), with (x, A) fixed, there exists an upper triangular n x n-
matrix R and a 2n x n matrix Q such that Q'Q = Iand W = QR.
When W € A(n) then Q; + iQ, is a unitary matrix, where

-()

To compute the Maslov index and the associated Evans
function, the following algorithm is applied.
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(1) Fix A and choose a large enough L > 0 for the integration
interval —L < x < +L.

(2) Compute the eigenvalues of B, (1) with positive real part and
their associated eigenvectors and use them to initialize the
matrix W(—L, ) to a matrix whose columns span the unstable
space of By, (1) and let o (A) be the sum of these eigenvalues.
Compute similarly a matrix So whose columns span the stable
space of B, (1).

(3) Initialize « (—L, A) such that

Y = det((U; + iVy) 7' (U, — iVy),
with W(—=L, 1) = (31) .
L

(4) Assign Scale(—L) < 1.
(5) In each space step, x — x + Axin [—L, L]:
(a) Integrate equation

W, = A(x, W)W, over [x, x + Ax]. N (9.15)
(b) Compute the economy QR-decomposition: W(x + Ax) =
QR.

(c) Assign Scale(x + Ax) < Scale(x) x det(R) x e o+M4x,
(d) Assign W(x + Ax) < Q.
(e) Take k (x + Ax, A) to be the closest real number to « (x, A)
such that )
Qi (AR det[U —iV]

~ det[U +iV]’
with Q = W(x + Ax, A) = (3) )
det|W(L,1),So] .
(6) Return Scale(L) x QWL S0l for the Evans function.
(7) Return W for the Maslov index.

To analyse the numerical accuracy of this algorithm, one has
to use_exterior algebra. If we consider Y(x) = Scale(x)W(x) ©
---®W(x), then Y is consistent at the same order as the numerical
scheme for the equation Y'(x) = (A™W(x, 1) — o (1)Y(x). As
a consequence, the error analysis is the same as for the exterior
algebra algorithm made in part 1. Besides, we have

det[W(L, 1), So]
det[W(—L, 1), So]
det[W(L, 1), S(L, A)]
T 2o+l det[W(—L, 1), S(L, A)]
det[W(L, 1), S(L, M)]
lim e20+M det[W(—M, ), S(M, 1)]

M—o00

Scale(L) x

12

(9.16)

where S, W are matrix solutions of (2.5) and whose columns span
the stable space and the unstable space respectively.

We conclude that the Evans function is also correctly estimated.

This algorithm was tested on the seventh-order Korteweg-de
Vries equation in Section 8 and it worked very well. The
Grassmannian is preserved since orthogonalization is enforced at
every step. However, the distance from the Lagrangian manifold
must be checked. Let

_ D] 2nxn
D= (Dz) eR s

be a matrix with orthonormal columns: D'D = I. Then, define
a(D) = p(D'JD), where p denotes the spectral radius, i.e. the
modulus of the biggest eigenvalue. This gives an estimation of
how far D is from the Lagrangian manifold. This distance does not
change by a right multiplication of D by an orthogonal n x n-matrix.

For the numerical integration two “off the shelf” integrators
were used: the standard fourth-order Runge-Kutta method in
MATLAB and the implicit midpoint method. The latter one is a

Distance to the Lagrangian manifold
10 T T T

10 Ax=0.1 7

A x=0.01

0 10 20 30 40

Fig. 6. Numerical test of the QR algorithm combined with the fourth-order
Runge-Kutta integrator: o(W(x)) as a function of x for various space steps. The
equation integrated is (2.3) with B as in Section 8. For Ax = 11% we see that the
Lagrangian manifold is quite well preserved.

symplectic integrator and it preserves quadratic invariants to
machine accuracy [28]. As a consequence, «(W) should be close
to the machine precision when the implicit midpoint rule is used,
and this is observed in the numerics. The error is also quite small
for the Runge-Kutta method, as shown in Fig. 6, as long as the space
step used is small.

The following table compares the number of operations for the
exterior algebra method and the QR method.

Algorithm | Integration | Dimension | Cost of an Cost of the
space explicit orthogo-

Euler nalization
integration | step(MGS)
step

QR Man.n (R) 22 @2n)?n 1o

2n=4 My, (R) 8 32 27

2n==6 Ms.5(R) 18 108 90

2n=38 Mg 4(R) 32 128 214

Exterior AR <2n”> n?+1) -

algebra (2nn)

2n=4 AZRY 6 30 -

2n=6 A’ (RS) 20 200 -

2n=28 NES)) 70 1190 -

So, the cost of the exterior algebra algorithm is lower for 2n = 4,
while the two algorithms are similar for 2n = 6, with probably
a slight advantage for QR. For 2n > 6, QR is much better (one
may further improve speed by not performing orthogonalization
at every step).

10. Decomposing the Maslov angle into subangles

The Maslov angle is based on the fact that the determinant of
the unitary matrix

Q=U-iVU+iV ",

associated with a Lagrangian plane W, lies on the unit circle.
However, this definition can be refined further since each of
the eigenvalues of Q also lies on the unit circle, and hence the
Maslov angle can be decomposed into n subangles. Monitoring
the angles separately can be useful when using the intersection
theory definition of the Maslov index [1] and when studying
bifurcations [12].
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Denote the n eigenvalues of Q by e'i forj = 1, ..., n with each
kj real. Then

eil( — eiKl eikz . eiKn.

These eigenvalues are independent of the choice of basis for
the Lagrangian subspace represented by W € R?"*", Choosing any
other representative leads to a similar matrix.

The subangles can be used to determine intersections with a
reference space. For definiteness choose the reference space to be

_ I 2nxn
Ref = (0) eR .

Suppose W(x) is a path of Lagrangian planes and suppose that
all intersections between W(x) and Ref are regular and one-
dimensional.

At an intersection one of the eigenvalues of Q is unity. For
definiteness suppose it is k4, and so e*1®*0) = 1. Then there is an
eigenvector v € R" such that

Q(xo)v = e“1®0y — y,
If v is chosen to be unitary and JW, = BW, then

= 2(Wv)"B(Wv).

X=Xq

i()
&

As a consequence, the sign of the intersection at xo with the
reference space is simply given by the sign of k’(xg).

10.1. Computing the subangles in the exterior algebra setting

These subangles can be computed in the exterior algebra
framework: e*r are the roots of the following polynomial:

P(X) = det((U —iV) — A(U+iV))

The coefficients of P are antisymmetric multi-linear functions of W.
As a consequence, they can be expressed as a linear combination of
the minors of W.

Consider the case n = 3 where there are three subangles. By
replacing U and V by (1 — A)U and (1 + A)V in formula (4.4), one
obtains

P(L) = (1 —21)°Pias — (1= 1) (14 1)*Pysg
+ (1= 1)1+ 2)?Pags — (1 = A)(1 4 1)*Pags
—i(1 = 2)?(1 4+ MPis +i(1 = 1)*(1 4 A)P13s
—i(1 = 1)*(1 4 )P4 4 i(1 4 1)*Pasg.

This expression can be simplified to

P(L) = —KA> — HA? + HA + K,

Whgre H(Z) = (—3P123 — P156 + P24s — P345 — iP126 + iP135 — iP234

— 3iPys6).

Third-order equations are known to be solvable through

Cardano’s formulae. Using MAPLE, the solutions of this cubic
equation are

(10.17)

i, 1A1(1/3)+2A 1H
el = = - — — - = =,
"6 G 372736
A 1 A0 1 1H
elKZ:)\‘ZZ_i _ —7A2—7:
12 (;(1/3)3 3G
1 1 44 2
+-iv3 = —— -2 4,),
2 (6 G 3 2)
. 1 24,73 1 1H
elK3:)\.3—if_fA2_7:
12 G 3 3G

1 14,03 2
——iv3 |z —— - 4,],
2 6 G 3

A, = —36HHG + 108GG — 8H>
1+12+/3Gy/27/G[* — [H* — 18 |GH[? — 8Re(GH?),
_ 3HG+H
NE)

10.2. Higher dimensions and higher-dimensional intersections

Intersections between the path of Lagrangian subspaces W(x)
and the reference space of dimension greater than one can also be
considered. This case is discussed in [7]. Here a sketch of the theory
is given.

There is a k-dimensional intersection at x, with Ref if and only if
there exists S = {ry, 15, ..., 1} € {1, ..., n} such that e¥r®0 = 1
ifand only ifr € S.

Furthermore, if this intersection is regular, its sign is given by

lim+ #{r € S|ki(xo) €]0, w[+27Z} — #{r € S|

X*)XO
ki(xp) €] — m, 0[+27Z}.

Thus, it is possible to determine the Maslov index, defined with
intersections, by simply tracking the crossings of the angles «; with
21 7.

In higher dimensions, the general expression of the polynomial
P(}) in terms of the exterior algebra representation is

P(A) = > (1)
({iq in},r)
i]<--<in
(il,m.ir.ir_H—n AAAAA in—n}={1,...,n}
P
XA+ (D= Ziy i,

In general the polynomial P(1) also satisfies the identity

P(1) = A"P (ﬁ)
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