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On the Maslov index of multi-pulse
homoclinic orbits

BY FRÉDÉRIC CHARDARD1, FRÉDÉRIC DIAS1 AND THOMAS J. BRIDGES2,*
1CMLA, Ecole Normale Supérieure de Cachan, CNRS, PRES UniverSud,

61 Av. President Wilson, 94230 Cachan, France
2Department of Mathematics, University of Surrey, Guildford GU2 7XH, UK

Multi-pulse homoclinic orbits of Hamiltonian systems on R
4 can be classified by a

sequence of integers. In this paper, we find the surprising result that this string of integers
encodes the value of the Maslov index of the homoclinic orbit. Our results include a
computable formulation of the Maslov index for homoclinic orbits and a robust numerical
method for the evaluation of the Maslov index.

Keywords: Hamiltonian systems; Lagrangian planes; Maslov index; exterior algebra;
geometric numerical integration; bifurcation

1. Introduction

Homoclinic orbits are important in Hamiltonian dynamical systems. They can
be organizing centres for chaos, and in the case where they are steady-state
solutions of an evolutionary partial differential equation (PDE) they represent
localized solutions such as solitary waves. Of interest in this paper are multi-pulse
homoclinic orbits.

A multi-pulse homoclinic orbit is firstly a homoclinic orbit. The ‘multi-pulse’
nature indicates multiple maxima and minima in the graph of the function.
An important open question is how to distinguish between two multi-pulse
homoclinic orbits. A universal classification of multi-pulse homoclinic orbits has
yet to emerge. However, for a class of autonomous Hamiltonian systems on R

4,
Buffoni et al. (1996) have introduced a precise classification based on a sequence
of integers. Multi-pulse homoclinic orbits are labelled by n(�1, . . . , �n−1) where n
is the modality (the number of major local extrema) and �1, . . . , �n−1 are related
to the number of minor bumps between consecutive extrema. A precise definition
is given in Buffoni et al. (1996). Hereafter, this classification is called the BCT
classification.

An important topological invariant of any orbit of a Hamiltonian system is the
Maslov index. A precise definition of the Maslov index in this context is given in
§2. We have found that the Maslov index of a homoclinic orbit is encoded in the
BCT classification as

Maslovhomoclinic = neven + 2nodd + 2, (1.1)
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where neven (nodd) is the number of even (odd) integers in the sequence �1, . . . , �n−1.
This observation is numerical. The results are obtained by explicit computation
using a new numerical algorithm for computing the Maslov index.

The class of Hamiltonian systems of interest is steady solutions of the PDE

φt = −φxxxx − Pφxx − φ + φ2, (1.2)

where P is a real parameter. Steady solutions are orbits of the one-dimensional
equation (ODE)

φxxxx + Pφxx + φ − φ2 = 0. (1.3)

This ODE has been extensively studied because of its importance in pattern
formation. It is called the canonical equation in the book by Peletier & Troy
(2001), and it is the ODE that forms the basis of the theory of Buffoni et al.
(1996). The ODE (1.3) can be characterized as a Hamiltonian system and the
formulation used here is recorded in appendix A.

The PDE (1.2) arises in many applications: beam buckling, pattern formation –
where it is called the one-dimensional Swift–Hohenberg equation (Burke &
Knobloch 2007), thin-film flows and a variant (an additional space derivative
is added to the right-hand side) arises in the theory of capillary-gravity water
waves, called the fifth-order KdV equation. A review of equations of this type is
given by Champneys (1999).

The linearization of equation (1.2) about a multi-pulse solution φ̂(x) satisfying
equation (1.3) and taking exponential in time solutions φ(x , t) �→ e−λt φ(x) leads
to the linear ODE

φxxxx + Pφxx + φ − 2φ̂(x)φ = λφ. (1.4)

This ODE can be reformulated as a standard linear Hamiltonian system on R
4 as

Jux = B(x , λ)u, u ∈ R
4, (1.5)

where B(x , λ) is a symmetric matrix depending smoothly on x and λ with the
property

lim
x→±∞ B(x , λ) = B∞(λ) (1.6)

and

J =
[
0 −I
I 0

]
. (1.7)

The matrix B(x , λ) is defined in equation (A 2).
The parameter λ serves two purposes. It is a stability exponent for the PDE,

but it is also a device for assuring genericity (see §2a for discussion). We will be
primarily interested in the limit λ → 0.

The Maslov index is most familiar in the literature in the context of closed
orbits, e.g. the case of equation (1.5) with periodic coefficients, because of
its importance in semi-classical quantization (cf. Arnold 1967; Littlejohn 1986;
Littlejohn & Robbins 1987; Robbins 1991; Pletyukhov & Brack 2003, and
references therein). The Maslov index of homoclinic orbits was first introduced by
Jones (1988) and Bose & Jones (1995) for one-pulse homoclinic orbits. We turn
this definition into a computable formula by introducing an explicit intersection
form, following Robbins (1991, 1992) and Robbin & Salamon (1993). Chen & Hu
(2007) have recently introduced a formulation of the Maslov index for homoclinic
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orbits. They give two constructions. The first is based on an intersection index and
therefore is a generalization of the Bose–Jones definition. Their second definition
is based on a relative Morse index of equation (1.5) considered as an operator
on the real line. It is the intersection index formulation that is most useful for
numerics.

The Maslov index for a homoclinic orbit can also be defined by approximating
the homoclinic orbit by a periodic orbit and then taking the limit as the period of
the orbit goes to infinity. The existence of this Maslov index was recently proved
in Chardard (2007). Both definitions are used in the numerical computation to
double check the results.

The paper has three parts: derivation of a computable formula for the Maslov
index, a numerical algorithm on exterior algebra spaces for computing the Maslov
index and results for multi-pulse orbits of equation (1.3).

2. The Maslov index of a homoclinic orbit

A subspace span{ξ1, ξ2} of R
4 is a Lagrangian subspace if ξ1 and ξ2 are

linearly independent and 〈Jξ1, ξ2〉 = 0. Here and throughout 〈·, ·〉 is the standard
inner product on R

4. The stable and unstable subspaces of equation (1.5) are
Lagrangian subspaces.

The matrix A∞(λ) := J−1B∞(λ) and B∞(λ) is defined in equation (A 3). The
characteristic polynomial of A∞(λ) is

det[A∞(λ) − μI] = μ4 + Pμ2 + 1 − λ = 0.

For P < + 2 and λ = 0, all four roots have non-zero real parts and this property
will persist for small λ (and we are only interested in small λ in this paper). In fact,
two eigenvalues have positive real part and two have negative real part. Associated
with the eigenvalues with positive (negative) real part is a two-dimensional
unstable (stable) subspace. Denote the stable subspace of A∞(λ) by

Es(λ) = span{ξ1, ξ2},
where ξ1 and ξ2 are the eigenvectors associated with the eigenvalues of A∞(λ)
with negative real part

A∞ξj = μjξj , Re(μj) < 0, j = 1, 2, (2.1)

with appropriate modification if μ1 = μ2. Eu(λ) is defined analogously. It is easy
to verify that Eu(λ) and Es(λ) are Lagrangian subspaces, and their x-dependent
extensions are also Lagrangian.

Let U+(x , λ) be a 4 × 2 matrix whose columns span the x-dependent unstable
subspace and so U+(x , λ) → 0 as x → −∞. U+(x , λ) is a path of Lagrangian
planes. The Maslov index is defined as the signed count of the intersections of
the image of U+ with Es as x goes from −∞ to +∞. This definition of the
Maslov index for homoclinic orbits is equivalent to the definition introduced in
Jones (1988) and Bose & Jones (1995), although a computable expression for the
intersection form is required.

Proc. R. Soc. A (2009)
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A point x0 is called a point of one-dimensional intersection between Image(U+)
and Es if

Image(U+(x0, λ)) ∩ Es(λ) = span{ξ}
for some non-zero vector ξ ∈ R

4. Clearly this implies that

ξ = α1ξ1 + α2ξ2 = U+β

at the intersection for some α = (α1, α2) ∈ R
2 \ {0} and β ∈ R

2 \ {0}. A one-
dimensional intersection is regular at x0 if the crossing is transversal as x is varied.
To test for transversality, an intersection form is used.

Formulas for the intersection form have been given in Robbins (1991, 1992)
and Robbin & Salamon (1993). These representations are equivalent (modulo a
choice of orientation) and they are based on the following formula. At a point of
one-dimensional intersection x0, the crossing form is defined as

Γ (U+, Es, x0) = 〈JU+
x β, U+β〉 vol,

where vol is the chosen volume form, which is fixed throughout to be

vol = e1 ∧ e2 ∧ e3 ∧ e4

with R
4 = span{e1, e2, e3, e4}.

When Γ (U+, Es, x0) 
= 0, the intersection is said to be regular. The sign of the
intersection is defined as the sign of Γ (U+, Es, x0).

Using the differential equation and the representation of ξ in equation (2.1),
this is

Γ (U+, Es, x0) = 〈B(x0, λ)ξ , ξ〉 vol. (2.2)

We are now in a position to define the Maslov index of the path U+. Suppose
that

lim
x→±∞ Image(U+(x , λ)) ∩ Es(λ) = {0}

and for −∞ < x < +∞ assume that the intersections between Image(U+) and
Es(λ) are one-dimensional (higher-order intersections can also be accounted for
but will not be needed here) and regular. Then the Maslov index of the path U+ is

Maslov(U+, Es, λ) =
∑
x0

sign 〈B(x0, λ)ξ , ξ〉, (2.3)

where the sum is over all points of intersection −∞ < x0 < ∞.
The Maslov index of the homoclinic orbit is defined as the limit as λ → 0+,

Maslovhomoclinic = lim
λ→0+ Maslov(U+, Es, λ). (2.4)

(a) The role of λ

The appearance of λ in the formulation appears odd, as we are interested in
the Maslov index of homoclinic orbits and this index should be defined purely in
terms of the steady equation (1.3). However, the parameter λ is of interest for two
reasons. First, it is a stability exponent for the time-dependent equation (1.2).
While the issue of stability is only briefly remarked on in this paper, the stability
of solitary waves is one of the motivating factors in the study of the Maslov index
(cf. Jones 1988; Bose & Jones 1995; Chardard et al. in press).
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The second reason that λ is useful as a numerical device. When λ = 0, there is a
bounded solution of equation (1.5) (ŵx in the notation of appendix A), and so the
Maslov index jumps by 1 at this point. By perturbing λ slightly, this property
is eliminated. Hence the numerical computations are carried out with small λ.
Taking the limit λ → 0− differs from λ → 0+, but it is merely a convention to
decide which limit to take. Here we have opted for the + convention (2.4).

In principle the Maslov index (2.3) is straightforward to compute. We fix λ near
0+ and integrate the unstable subspace of (1.5) from x = −L to x = +L for some
large L and sum the signed intersections. However integration of the unstable
subspace is numerically unstable! To avoid this difficulty, the induced equation
on

∧2
(R4) is integrated and this approach is numerically stable (Allen & Bridges

2002; Chardard et al. 2006, in press).

3. Exterior algebra representation of Maslov index

The advantage of an exterior algebra representation is that two-dimensional
subspaces of R

4 become lines in the exterior algebra space. This strategy reduces
the numerical integration to a problem similar to integration on R

2, and then
numerical integration is trivial. The details of numerical integration on exterior
algebra spaces in this context are given in Chardard et al. (in press) and only the
basic details are given here.∧2

(R4) is a six-dimensional vector space spanned by all non-trivial two-vectors
of the form ei ∧ ej , where i, j = 1, . . . , 4. The orthonormal basis induced from the
standard basis of R

4 is
E1 = e1 ∧ e2, E2 = e1 ∧ e3, E3 = e1 ∧ e4,

E4 = e2 ∧ e3, E5 = e2 ∧ e4, E6 = e3 ∧ e4.

}
(3.1)

Any U ∈ ∧2
(R4) can be represented in the form U = ∑6

j=1 Uj Ej . An element of∧2
(R4) does not necessarily represent a two-plane. A point U ∈ ∧2

(R4) represents
a two-plane if

0 = U ∧ U = (U1U6 − U2U5 + U3U4) vol.

This submanifold of the projectification of
∧2

(R4) is the Grassmannian of two-
planes in R

4, G2(R
4). A two-plane is Lagrangian if, in addition, it satisfies

0 = ω ∧ U = (U2 + U5) vol,

where ω = e1 ∧ e3 + e2 ∧ e4 is the two-form associated with J.
The practical implementation involves constructing an induced ODE on∧2
(R4). Given the linear system ux = A(x , λ)u on R

4 with A = J−1B(x , λ), there
is an induced linear system on

∧2
(R4),

Ux = A(2)(x , λ)U, U ∈ ∧2
(R4).

Here A(2)(x , λ) is a 6 × 6 matrix whose entries are linear functions of the entries
of A(x , λ). A formula for the entries is given in §2 of Allen & Bridges (2002) and
the induced matrix associated with equation (1.5) is given in appendix A.

Proc. R. Soc. A (2009)
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In this setting, the stable subspace at infinity is represented by the two-form
ξ1 ∧ ξ2 and the path of unstable subspaces is represented by a two-form which
will be denoted by U+(x , λ). It satisfies

U+
x = A(2)(x , λ)U+ with lim

x→−∞ e−σ+(λ)xU+(x , λ) = ζ+(λ), (3.2)

where ζ+(λ) ∈ ∧2
(R4) represents the unstable subspace Eu(λ) and σ+(λ) is the

sum of the two eigenvalues of A∞(λ) with positive real part.
An intersection between U+ and Es(λ) can be described as follows. U+ has a

non-trivial intersection with Es if and only if there exists α = (α1, α2) ∈ R
2 with

α 
= 0 and
U+(x , λ) ∧ (α1ξ1 + α2ξ2) = 0. (3.3)

If U+(x , λ) ∧ (α1ξ1 + α2ξ2) = 0 implies α = 0, then we say that U+(x , λ) and Es(λ)
are transverse. At a one-dimensional regular intersection α 
= 0, but it is a one-
dimensional subspace of R

2. Intersections can also be checked by monitoring the
sign changes of the four-form U+ ∧ ξ1 ∧ ξ2, but the test based on equation (3.3)
is needed for construction of the crossing form.

In the exterior algebra setting, a representation of the crossing form is

Γ (U+, Es, x0) = ω ∧ ξ ∧ Aξ . (3.4)

To verify that this is equivalent to equation (2.2), note that

ω ∧ a ∧ J−1c = 〈a, c〉 vol for any a, c ∈ R
4.

Hence ω ∧ ξ ∧ Aξ = ω ∧ ξ ∧ J−1Bξ = 〈ξ , Bξ〉 vol. The formula (3.4) has an
interesting geometric interpretation. At a regular intersection, the two-plane
ξ ∧ Aξ is not a Lagrangian plane. It is in the complement to the Lagrangian
in G2(R

4).
Suppose that limx→±∞ U+(x , λ) is transverse to Es(λ) and suppose all the

intersections are one-dimensional and regular, then

Maslov(U+, Es, λ) =
∑
x0

sign ω ∧ ξ ∧ Aξ .

The Maslov index of the multi-pulse homoclinic orbit is then obtained by taking
the limit λ → 0+.

4. An algorithm for computing the Maslov index

An algorithm for computing the Maslov index based on the exterior algebra
representation is constructed as follows. Fix λ. Compute a basis for Es(λ) and
Eu(λ). Earlier, Es(λ) was expressed as span{ξ1, ξ2}. Here the stable and unstable
subspaces will be represented in the exterior algebra representation. This just
means solving

A∞(λ)ζ±(λ) = σ±(λ)ζ+(λ)

with σ+(λ) (σ−(λ)) the sum of the two eigenvalues of A∞(λ) with positive
(negative) real part. Then ζ−(λ) (ζ+(λ)) represents Es(λ) (Eu(λ)).

Proc. R. Soc. A (2009)
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Integrate equation (3.2) with the exponential growth eσ+(λ)x factored out1

U+
x = [A(2)(x , λ) − σ+(λ)I]U+, −L < x < L, (4.1)

with
U+(−L, λ) = ζ+(λ) (4.2)

for some large value of L (typically we have used L = 25). For the numerical
integration, a standard fourth-order explicit Runge–Kutta algorithm is used. All
the codes are written in MATLAB. Further details of the numerics including listings
of the MATLAB codes can be found in the thesis of Chardard (2009).

Intersections are detected and counted as follows. Let

Yj(x , λ) = U+(x , λ) ∧ ξj , j = 1, 2.

Y1 and Y2 are three-forms and
∧3

(R4) is a four-dimensional vector space, so
it is isomorphic to R

4 (this isomorphism can be explicitly constructed but is
not needed). An intersection occurs when Y1 and Y2 are linearly dependent and,
viewed as vectors in R

4, Y1 and Y2 are linearly dependent if and only if Y1 ∧ Y2 =
0. Define

y(x , λ) = det
[〈Y1, Y1〉 〈Y1, Y2〉
〈Y2, Y1〉 〈Y2, Y2〉

]
. (4.3)

Then Y1 ∧ Y2 = 0 is equivalent to y(x , λ) = 0, or numerically when y(x , λ) < ε for
some small ε > 0.

At each intersection, α1 and α2 are computed by solving α1Y1 + α2Y2 = 0.
Then α is used to construct ξ and the crossing form is evaluated. To summarize:
integrate equation (4.1) with initial condition (4.2) from x = −L to L. Monitor
y(x , λ) in equation (4.3) and when y(x , λ) ≈ 0, compute the sign of the crossing
form and add the appropriate sign to the Maslov counter. The Maslov index is
then the value of the Maslov counter at x = L.

5. Computing the Maslov index for orbits of equation (1.2)

Apply this theory to the system (1.5) associated with equation (1.2) linearized
about a multi-pulse homoclinic orbit. The induced matrix on

∧2
(R4) is given in

equation (A 4). The system at infinity is hyperbolic for all real λ satisfying λ < 1
(when P < 0) and λ < 1 − 1

4P
2 (when P > 0), and A∞(λ) has two eigenvalues with

positive real part and two with negative real part. The eigenfunctions associated
with Es(λ) and Eu(λ) are easily calculated.

Before computing branches of multi-pulse homoclinic orbits in the BCT
classification, we sketch the properties of the classification. A homoclinic orbit
is classified according to the number of times its path in configuration space
encircles the origin. The orbit is labelled by n(�1, . . . , �n−1), where n is a natural
number called the modality, the number of large local maxima, and �k is twice the
number of encirclings of the origin of configuration space, between consecutive

1Factoring out the exponential growth is purely a numerical device to ensure stable integration.
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Figure 1. Bimodal multi-pulse homoclinic orbits with P = 1.5.

local maxima. A family ψP of solutions of equation (1.3) is said to have a mode
at si,P if

lim
P→−2+(ψP(si,P), ψ ′

P(si,P), ψ ′′
P(si,P), ψ ′′′

P (si,P)) = (φ−2(0), φ′
−2(0), φ′′

−2(0), φ′′′
−2(0)).

A multi-pulse homoclinic orbit is said to have type n(�1, �2, . . . , �n) if it has n
modes at the points s1,P , s2,P , . . . , sn,P , and

lim
P→−2+ si+1,P − si,P = ∞,

and the number of zeros of 1
2ψ

′′2
P − 1

2ψ
2
P + 1

3ψ
3
P in [si,P , si+1,P ] is equal to 2�i .

BCT have conjectured that there is a unique family of each type, up to a space
translation.

An important property of this classification is that it is precise only in the
limit P → −2. Therefore, the strategy for computing a multi-pulse orbit of
equation (1.3) in the BCT classification is to start with an orbit near P = −2
and then continue it in P. Examples of bimodal multi-pulse orbits are shown in
figure 1. The 2(�) pulses in this figure are all symmetric. They were computed
using the shooting algorithm of Champneys & Spence (1993). Indeed, figure 1 was
inspired by fig. 4a in Champneys & Spence (1993). An example of a symmetric
multi-pulse orbit of modality 5 is shown in figure 2.

Asymmetric solutions are computed using a Fourier method (approx. the
homoclinic orbit by a periodic solution of large wavelength). An example of an
asymmetric multi-pulse orbit of type 3(3, 1) is shown in figure 3. The MATLAB
codes used are listed in the appendix of Chardard (2009).

We now proceed to compute the Maslov index for a series of multi-pulse
orbits. Fixing a multi-pulse orbit in the BCT classification, the Maslov index is
computed using the algorithm in §4. To double check the computations, we also
computed the Maslov index by approximating the multi-pulse orbit by a periodic
solution of long wavelength, and then using the formula in Chardard et al. (2006)

Proc. R. Soc. A (2009)
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Figure 2. A solitary wave of type 5(3, 1, 1, 3) when P = 1.5. The Maslov index is 10.
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Figure 3. Trimodal solution 3(3, 1) when P = 1.5. The Maslov index is 6.

and Chardard (2007). See Chardard et al. (in press) for other algorithms for
computing the Maslov index. The results for a range of orbits in the BCT
classification are listed in table 1.

The table shows that all computed orbits satisfy the formula (1.1), and so it
is reasonable to conjecture that it is true for all multi-pulse orbits in the BCT
classification.

There are other examples in the literature of multi-pulse homoclinic orbits that
can be identified with the BCT classification and so their Maslov indices can be
predicted. The homoclinic orbits found by Champneys & Toland (1993) are of
type 2(�) and so they have Maslov index 3 (if � is even) or 4 (if � is odd). They were
proved to exist for P ∈ (−2, −2 + ε). Numerical results of Buffoni et al. (1996)
suggest that homoclinic orbits of the type n(�1, . . . , �n−1) exists for all n ≥ 2 and
for all P ∈ (−2, 1.5]. The homoclinic orbits found by Buffoni (1995) are of type
n(1, . . . , 1) and hence they have Maslov index 2n, and they were shown to exist for
all P ∈ (−2, 0]. One can deduce from this that homoclinic orbits of the ODE (1.3)
exist with Maslov index of every natural number greater than or equal to two.
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Table 1. Computed Maslov index for multi-pulse homoclinic orbits in the BCT classification.

family Maslov index family Maslov index

1 2 3(4, 4) 4
2(1) 4 3(5, 5) 6
2(2) 3 3(6, 6) 4
2(3) 4 4(3, 1, 3) 8
2(4) 3 4(3, 2, 3) 7
2(6) 3 4(3, 3, 3) 8
2(7) 4 4(3, 4, 3) 7
2(8) 3 4(3, 5, 3) 8
2(9) 4 4(3, 6, 3) 7
2(10) 3 5(3, 1, 1, 3) 10
3(2, 1) 5 5(3, 2, 2, 3) 8
3(3, 1) 6 5(3, 3, 3, 3) 10
3(1, 1) 6 6(3, 2, 1, 2, 3) 10
3(2, 2) 4 6(3, 2, 2, 2, 3) 9
3(3, 3) 6 6(3, 2, 3, 2, 3) 10

6. Bifurcation and coalescence

The branches of multi-pulse homoclinic orbits that start at P = −2 appear to end
at some value of P < 2. Buffoni et al. (1996) identified two types of termination
point: coalescence and bifurcation. A coalescence corresponds to a turning point
and can occur along a symmetric or asymmetric branch. A ‘bifurcation’ in this
context is a point where a symmetric branch changes type and has a pitchfork
bifurcation to a asymmetric branch. A theory for bifurcation and coalescence
using a Lyapunov–Schmidt reduction has been developed by Knobloch (1997).
In this section, we look at the implications of coalescence and bifurcation for the
Maslov index. We will concentrate on one example that is illustrative.

The numerics also showed that both bifurcation and coalescence often occur
along the same branch. A schematic of fig. 17c in Buffoni et al. (1996) is shown
in figure 4. This scenario is an ideal setting to test the implication of the Maslov
index. Indeed, we have found a surprising result. Consider the case in figure 4.
We can apply the formula (1.1) to deduce that the branch 4(2, 1, 2) has Maslov
index 6. We confirmed this value numerically. Then after the coalescence point,
the computations show that the Maslov index jumps to 5. Now, start from
the branch 2(1). The formula and numerics show that the Maslov index is 4.
Similar use of the formula and computation show that the Maslov indices of the
asymmetric 3(1, 2) and 3(2, 1) branches are also 5. The numerically computed
multi-pulse homoclinic orbits emanating from the bifurcation point are shown
in figure 5.

These observations show an interesting anomaly in the BCT classification.
The short branch between the coalescence point and the bifurcation point is not
classifiable by the BCT scheme. On the other hand, this observation is consistent
with the theory of BCT. A branch of multi-pulse homoclinic orbits can only be
BCT classified if it can be continued to P = −2. It is precisely the branch between
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P

||u||

3 (1, 2)

M = 5

M = 4

M : = Maslov index

3 (2, 1)

M = 5

M = 64 (2, 1, 2)

2 (1)

Figure 4. Schematic of fig. 17c from Buffoni et al. (1996) with Maslov indices identified.
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Figure 5. Orbits 3(2, 1), 2(1) and 3(1, 2) when P = 1.5. The branches 3(2, 1) and 3(1, 2) bifurcate
from 2(1) at P ≈ 1.83817.

the coalescence and bifurcation points that cannot be continued to P = −2. All
other branches in figure 4 can be continued to P = −2. These observations have
been obtained numerically. By adapting the theory of Knobloch (1997), Chardard
(2009) has sketched an argument showing that indeed the Maslov index jumps
by 1 at each bifurcation point and at each coalescence point.

The property of coalescence and bifurcation occurring close together along a
branch appears to be pervasive, and so there will be many gaps where the multi-
pulse homoclinic orbits are not classifiable by the BCT scheme (see fig. 24 of
Buffoni et al. 1996). However, all these orbits have a well-defined Maslov index.

7. Remarks on the Morse index and stability of solitary waves

Let

L := d4

dx4
+ P

d2

dx2
+ 1 − 2φ̂(x).

Then equation (1.4) can be written as Lφ = λφ. Informally, the Morse index of
L is the number of negative eigenvalues of L. To be precise, the function space
needs to be identified and the spectrum decomposed. Here, just a rough idea of the
connection between the Morse and Maslov indices is given. In general, the Morse
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and Maslov indices are not equal. Indeed, one can construct examples where the
Morse index is infinite, but the Maslov index is finite. On the other hand, the
operator L has a nice structure. It has a monotonicity property that assures that
the Maslov and Morse indices are equal (this is proved in Chardard 2009).

With that observation, the role of the Maslov index in stability is quite
remarkable. For example, in the Swift–Hohenberg equation (1.2), viewing the
multi-pulse homoclinic orbits as stationary localized solitary waves, the Maslov
index equals the number of unstable eigenvalues. Therefore, one can conclude
that the higher modality multi-pulse solitary waves—indeed all solitary waves in
the BCT classification—are linearly unstable solutions of (1.2), and the higher
the modality, the more unstable it is.

When this theory is applied to the fifth-order KdV equation, however, the
results are more interesting because high Maslov index solitary waves can still be
stable (see Chardard et al. in press for results in this direction).

Appendix A. Hamiltonian formulation

The ODE (1.3) can be formulated as a Hamiltonian system in many ways. The
Hamiltonian formulation used in the numerics is recorded here. Let

q1 = φ, q2 = φxx , p1 = φxxx + Pφx and p2 = φx ,

and define
H (q, p) = 1

2q
2
1 − 1

2q
2
2 + p1p2 − 1

2Pp2
2 − 1

3q
3
1 .

Then equation (1.3) is represented by the Hamiltonian system

Jwx = ∇H (w), w = (q1, q2, p1, p2), (A 1)

where J is the standard symplectic operator defined in equation (1.7).
Let φ̂(x) be a solution of equation (1.3) and ŵ its associated solution of

equation (A 1), then

ŵ(x) := (φ̂, φ̂xx , φ̂xxx + Pφ̂x , φ̂x).

Then the linearization of equation (A 1) about ŵ is

Jux = D2H (ŵ)u,

where D2H (ŵ) is the Hessian of H evaluated at ŵ. Define

B(x , λ) = D2H (ŵ)u − λI =
⎡
⎢⎣

1 − 2q̂1(x) − λ 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 −P

⎤
⎥⎦ . (A 2)

The linear Hamiltonian system Jux = B(x , λ)u with u ∈ R
4 is the main object of

the study in this paper. The ‘system at infinity’ is defined by

B∞(λ) = lim
x→±∞ B(x , λ) =

⎡
⎢⎣

1 − λ 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 −P

⎤
⎥⎦ . (A 3)
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Define A(x , λ) = J−1B(x , λ). Then the matrix induced from A(x , λ) on
∧2

(R4) is

A(2)(x , λ) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 −P 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
a(x , λ) 0 0 0 0 +P
0 0 0 0 0 1
0 0 −a(x , λ) −1 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (A 4)

For any u, v ∈ R
4, this matrix is defined by

A(2)(·)u ∧ v := A(·)u ∧ v + u ∧ A(·)u.

Details of the construction of induced matrices are given in Allen & Bridges (2002).
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