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Résumé

Cette these porte sur la stabilité des ondes solitaires et plus précisément sur les applications de
I'indice de Maslov au probleme de la stabilité spectrale des ondes solitaires unidimensionnelles.

Dans le premier chapitre, nous montrons comment la stabilité peut étre liée a ’étude d’une
famille d’équations aux dérivées ordinaires linéaires hamiltoniennes. 11 est alors possible de définir
un indice de Maslov pour les ondes périodiques et les ondes solitaires. Nous calculons ensuite la
limite de I'indice de Maslov d’une suite d’ondes périodiques approchant une onde solitaire et la
comparons a l'indice de Maslov de I'onde solitaire.

Dans le second chapitre, nous décrivons un algorithme utilisant ’algebre extérieure pour cal-
culer I'indice de Maslov.

Dans le troisieme chapitre, nous étudions I'indice de Maslov et la stabilité des ondes périodiques
et des ondes solitaires de I’équation de Kawahara.

Le quatrieme chapitre traite de l'indice de Maslov d’ondes solitaires apparaissant dans un
modele pour l'interaction entre ondes longues et ondes courtes.

Le sujet du dernier chapitre, un peu différent de celui du reste de la these, est la stabilité de
solutions stationnaires apparaissant dans 1’équation de Korteweg-de Vries avec forgage.

Mots clés : Stabilité, Equations aux Dérivées Partielles Hamiltoniennes, Indice de Maslov,
Fonction d’Evans, Algebre extérieure, Analyse numérique.
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Abstract

This thesis is devoted to the stability of solitary waves, and more precisely to the applications
of the Maslov index to the spectral stability problem.

In the first chapter, we show how the stability problem can be generically related to a family
of linear Hamiltonian ODE. It is then possible to define a Maslov index for periodic waves and
solitary waves. We compute the limit, when it exists, of the Maslov index of a sequence of
periodic waves which converges to a solitary wave and compare the limit with the Maslov index
of the solitary wave.

In the second chapter, we describe how exterior algebra can be used to compute the Maslov
index, both in the periodic and solitary wave cases.

In the third chapter, we study the Maslov index and the stability of solitary waves and periodic
waves arising in the Kawahara equation.

In the fourth chapter, we look at the Maslov index of solitary waves arising in a longwave-
shortwave interaction system.

The last chapter deals with the stability of stationary solutions of a model for flows over a

non-uniform bottom.

Keywords: Stability, Hamiltonian Partial Differential Equations, Maslov index, Evans func-
tion, Exterior Algebra, Numerical Analysis.
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Introduction

When looking at linear waves in an homogeneous medium, Fourier analysis shows that there are
two possible phenomena which are likely to destroy a wave packet:

e Dissipation: Fourier components are damped.
e Dispersion: Fourier components of the wave do not travel at the same speed.

It is also possible that the opposite phenomenon to dissipation occurs: Fourier components
grow exponentially.

Because of these two effects, linear theory leads to the same conclusion as AIRY on water-
waves: localized solutions travelling at a constant speed, called solitary waves, cannot exist in a
dissipative or dispersive medium.

However, solitary waves occur in several areas such as an-harmonic nonlinear lattices, gas
dynamics, hydromagnetic waves, ion-acoustic waves in cold plasma and hydrodynamics. But
the most spectacular observation of solitary waves goes back to the nineteenth century, with the
observation on horseback by Lord Scott Russell of a wave in a barge channel persisting for at
least one hour.

BOUSSINESQ [18], KORTEWEG AND DE VRIES [83] derived from the full incompressible Euler
equations with a free surface a one-dimensional model with third order derivatives, by making
the shallow-water hypothesis (e.g. that the wavelength is much greater than the depth) and
assuming a one-way propagation:

up = Uy — Upgs- (0.0.1)

This equation is non-linear and dispersive. The non-linearity can counteract the dispersion,
and (0.0.1) admits a solitary wave solution u(z) = fgsechQ(%\/E(z — ct)). This equation has
later been used in the great variety of domains mentioned earlier.

In the wake of FErRMI, PasTa, & ULAM studies on an-harmonic lattices, ZABUSKY AND
KRUSKAL[130] performed numerical experiments which showed that, despite non-linearity, if
solitary waves collide with each other, they emerge back again with the same shape and a phase
shift. To emphasize the analogy of these waves with interacting particles, they coined the term
soliton, often used as a synonym for solitary wave.

This caused an increasing interest for this equation. Theoretical advances using Sturm-
Liouville theory and inverse scattering theory were made. One of the most striking results
is the integrability of the Korteweg de Vries equation, proved by ZAKHAROV & FADEEV [131].

13
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This is closely related to the existence of N-soliton solutions, which describe analytically the
evolution of IV colliding solitary waves observed in the numerical experiments.

However, if a Korteweg de Vries model is taken with a non-linearity which is not quadratic or
cubic, the equation is no longer integrable and inverse scattering cannot be used. In that case
there are still solitary wave solutions, often in the form Asech? (b(x — ct)).

In order to be observed, a solitary wave solution needs to be orbitally stable. Let F be a
suitable Banach space of distributions over R. Let u(z,t) = ¢(a — ct) be a solitary wave solution,
with ¢ € E. Then, u is said to be orbitally stable if and only if:

e The Cauchy problem admits a unique solution over RT for any initial condition located in
a neighborhood of ¢.

e For any ¢ > 0, there exists a neighborhood U of u(-,0) such that for any solution v with
v(-,0) € U, we have sup,cp+ infacr [[v(-, ) — dpla+ )| < e.

Orbital stability is usually proved by finding a conserved quantity which traps neighboring
solutions, for example H + ¢P, where H is the Hamiltonian of the solitary wave and P its
momentum.

BoNA & SOUGADINIS & STRAUSS [15] present a review of results of solitary waves of KdV-type
equations.

While Korteweg-de Vries solitary waves and their stability are now well understood, this is
not yet the case for other dispersive equations like Kawahara equation:

3 5
%—c%-ﬁ-%(uﬁl)—i—P%—%:O, qg>1. (0.0.2)

This equation is relevant when the cubic dispersion is low. It was introduced in [80] to take
into account higher order dispersive terms. These additional terms can be relevant for water
waves in presence of capillarity, since particular values of capillarity can annihilate the third
order dispersive term.

Qualitatively, this equation is different from Korteweg-de Vries since it admits solitary wave
solutions with oscillating tails and multi-pulse solutions. N-pulse solutions have N pulses which
travel at the same speed. These solutions should not be confused with the N-soliton solution,
where the N colliding solitons usually have a different velocity.

While one-pulse may be treated with much the same tools as for the Korteweg-de Vries equation
(see [20, 89]), this is not the case for multi-pulse orbits whose existence has been proved by using
bifurcation theory ([27, 34]) rather than minimization under constraint, which is the case for uni-
modal solution ([27, 70]). BURYAK & CHAMPNEYS [30] and later CHUGUNOVA & PELINOVSKY
[42] applied the method of OSTROVSKY & GORSHKOV [67] to predict the stability of 2-pulse.
The idea is to prove that when P — 27, the two bumps behave approximately like a two-particle
system with an interaction potential. In this framework, each 2-pulse solution corresponds to
an equilibrium of the two particle system. It is then possible to get some information on the
stability of the 2-pulse by looking at the stability of the corresponding equilibrium.

Another way to study the stability problem is to linearize the non-linear equation near the
stationary solution Zs Let Zs + ¢ be a solution of equation (0.0.2), with ¢ a small function. Then,
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at the first order, ¢ is the solution of the following equation:

0
570 =Lo (0.0.3)

with Lo = %(qﬁmm — Py +cd—(q¢+ 1)(]?(30)‘1 @). Of course, this can be generalized to other
non-linear dispersive equations.

If we look for solutions ¢(z,t) = f(x)g(t) with separation of variables of this equation, then
d(x,t) = eM f(z) with Lf = Af. Since only L? solutions are relevant, it enforces f € L?(R).

Definition 1 A solitary wave 5 is said to be weakly spectrally stable if the spectral problem
Lu = Au does not admit any solution such that u € L*(R) and R(\) > 0.

Orbital stability implies weak spectral stability but the reverse is false.

The discrete spectrum of L can be computed by using the Evans function, studied in [1, 21, 62,
23, 101] for example. The spectral problem Lu = X can indeed be rewritten as a n-dimensional
first-order differential system:

o~

U, = Az, \)U, lim Az, N) = A (N). (0.0.4)
When iRNSp (A« (z, X)) = (), a condition equivalent to h) ¢ 0.ss (Where 0.5 denotes the essential
spectrum), there exists uy(x, ), ..., ug(z, ) and vy (2, A), ..., vn—r(z, X) solutions of (0.0.4) such
that:

e Let u(z) be a solution of equation (0.0.4). Then lim, ., o u(z) = 0 if and only if u(x) €
Span(uy(x,N), ..., ug(z, X)). Otherwise, lim,_,_ o ||u(z)|| = +o0.

e Let u(z) be a solution of equation (0.0.4). Then lim,_, ;o u(x) = 0 if and only if u(x) €
Span(vy(z, ), ..., vp—k(x, A)). Otherwise, limy_, ;o [Ju(x)| = +oo.

Span(us (z, X), oo ug(, X)) and Span(vq (z, X), ey Un—g(m, X)) are called the unstable space
and the stable space respectively.

Knowing this, it is evident that ) is in the discrete spectrum, e.g. that there exists a solution
in L2(R) of (0.0.4) if and only if:

Span(uy (2, \), ..., ux(z, \)) N Span(vy (z, A), . .., vn—k(z,\)) # {0}.

This condition is equivalent to:
DN =0

where D()), called the Evans function is defined as:

-~ ~ ~

D(\) :=e~ 5 “aceA(y”\)dy(x, A) det(ul(ac,X), cooug(z A) v (x, N, vk (2 X))

It is possible to choose the vectors u; and v; analytically with respect to . If chosen this way,
D()) is an analytic function!. ALEXANDER, GARDNER & JONES [1] proved that the zeros of D

I Analytic continuation of the Evans function beyond the essential spectrum is often possible, as shown by
GARDNER & ZUMBRUN [65]. Though this is often useful, we will not need it in this thesis.
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with multiplicity are the eigenvalues of L with multiplicity, by using a topological object called
the Chern complex. BRIDGES, DERKS & GOTTWALD [21] later provided an algorithm based on
exterior algebra to compute numerically the Evans function. By using argument principle, they
were able to count numerically eigenvalues inside a path.

Another approach developed in [42, 41, 82, 78] is to use the Hamiltonian structure of the
Kawahara equation to link the number of negative eigenvalues of the Hessian of the Hamiltonian
and the number of eigenvalues in the right-half plane.

This idea also applies to other Hamiltonian evolution equations in one space dimension, such
as the nonlinear Schrodinger (NLS) equation and the longwave-shortwave resonance (LW-SW)
equations but also to gradient flow-type system, like the Swift-Hohenberg equation or some
reaction-diffusion systems. As explained in chapter 1, solitary wave solutions can be characterized
as homoclinic orbits of a Hamiltonian ordinary differential equation (ODE). The spectral problem
associated with the Hessian of the Hamiltonian (or the functional from which the gradient flow
is derived) about a given homoclinic orbit, then leads to a parameter-dependent family of non-
autonomous linear Hamiltonian systems. The advantage of these Hamiltonian structures is that
the linear and nonlinear Hamiltonian systems have global geometric properties that aid in proving
existence of the basic solitary wave and in understanding its stability as a solution of the time-
dependent equation. Our interest in this thesis is in a particular geometric invariant — the Maslov
index of homoclinic orbits.

The study of the stability of solitary waves using the Maslov index was pioneered in the papers
by JONES [77] and BOSE & JONES [16]. The linear stability of steady standing wave solutions of
a spatially-dependent NLS equation is studied in [77]. The linearization about a steady solution
results in a linear A—dependent Hamiltonian system of the form (0.0.6) (see below) with n = 2
and A\ a spectral parameter. Geometric methods are then used to determine the Maslov index,
and it is used to prove an instability result. Gradient parabolic partial differential equations
(PDE) of the form

up = diUgy + fu(u,v)

(0.0.5)
vy = d2”rz+fv(uav)

are considered in [16], where d; and ds are positive parameters, f(u,v) is a given smooth function
with gradient (f,, f,). Linearizing about a steady solution (u(x),v(x)), and introducing a spec-
tral parameter leads to a pair of linear second-order ODEs which can be put into the standard
form (0.0.6) with n = 2, with the asymptotic property (0.0.9) and A the spectral parameter.
Since the PDE is a gradient system it is sufficient to restrict the spectral parameter to be real.
Singular perturbation methods are then used to determine the Maslov index, which in turn is
related to stability. A key feature of this work is the analysis of the induced system on the
exterior algebra space A\*(R4).

Many of the most interesting solitary waves are only known numerically and therefore a nu-
merical approach to the Maslov index is of interest. It is the aim of chapter 2 to develop a
numerical framework for computing the Maslov index of homoclinic orbits. Once the solitary
wave solution is known, analytically or numerically, it is the linearization about that solitary
wave which encodes the Maslov index. Therefore, the starting point for developing the theory is
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the following class of parameter-dependent Hamiltonian systems
Ju, = C(z,\)u, uckR®™, zecR, MeR, (0.0.6)

where J is the standard symplectic operator on R?"

0 -1
[0 0o

and B(z, \) is a symmetric matrix depending smoothly on z and \. Let
B(z,\) = J'C(z,\). (0.0.8)

The fact that B(z, \) is obtained from the linearization about a solitary wave suggests the
following asymptotic property:
B (A) = lim B(z,\), (0.0.9)

z—+oo
and that B, (A) is strictly hyperbolic (e.g has no imaginary eigenvalue) for an open set of A
values that includes 0.
The Maslov index is a winding number associated with paths of solutions of (0.0.6), in partic-
ular paths of Lagrangian planes. A Lagrangian plane is an n—dimensional subspace of R?", say
span{zi,...,z,}, satisfying

(J2zi,z;) =0, Yi,j=1,...,n,

where (-, -) is a standard inner product on R?".
Suppose A is fixed and on the interval a < x < b consider a path of Lagrangian planes

[a,b] = Z(x,)\) = [z1(z,\)| - | Zp(2, )] € RZX™

satisfying Z, = B(xz, A\)Z for a < 2 < b. The Maslov index of this path is a count of the number
of times this path of Lagrangian planes has a non-trivial intersection with a fixed reference
Lagrangian plane. A precise definition is given in chapter 1. This index is of interest since it
can count the solutions of the spectral problem for quite general systems. A proof based on
comparison arguments is given in Appendix C. Hence, the Maslov index is directly related to
stability.

We will first study the Maslov index of a sequence of periodic orbits which converges to
a homoclinic orbit. The Maslov index for periodic orbits has indeed been widely developed
because of its interest in semi-classical quantization (e.g. [71, 46, 90, 111, 104, 98] and references
therein). Furthermore, any homoclinic orbit of Hamiltonian system can be approximated by
such a sequence of periodic orbits (see [120]).

In section 1.3.1, we prove under suitable hypotheses that if the periodic orbit is asymptotic to
a homoclinic orbit, the Maslov index converges to the Maslov index of the limiting homoclinic
orbit.

We then compare this limit with the definition that is used by JONEs [77] and BOSE &
JONES [16] but also CHEN & Hu [40], taking the Lagrangian path to be a path of unstable
subspaces and taking the reference plane to be the stable subspace at infinity. We will extend
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this definition by introducing an explicit and computable formula for the intersection index. This
theory is developed in §1.1.2.

In chapter 2, we give an algorithm to compute the Maslov index both in the periodic and
the homoclinic case. From the numerical point of view, the exterior algebra formulation is also
advantageous. We give formulas for different representations of the Maslov index for Lagrangian
planes on A" (R?") for any n, and present a general algorithm that works — in principle — for any
dimension n. However, the dimension of A" (R?") increases rapidly with n and so the algorithm
is most effective for low dimensional systems. The algorithm is constructed so that the manifold
of Lagrangian planes is attracting. A tutorial example on R? is available in Appendix E, where
the details can be given explicitly. It is a scalar-reaction diffusion equation with an explicit
localized solution.

In chapter 3, we apply the framework to the periodic waves and solitary waves of the afore-
mentioned Kawahara equation. We also make some remarks on the behaviour of the Maslov
index near bifurcation points: Consider a solitary-wave solution of (0.0.2). Then, if we change
the parameter P, the homoclinic orbit may undergo a bifurcation. We observe that the value
of the Maslov index changes at these points. Finally, we study directly the spectrum of L by
computing its associated Evans function.

In chapter 4, the computational framework for the Maslov index is illustrated by an application
to the LW-SW wave resonance equations, which has exact solitary-wave solutions. These equa-
tions arise in fluid mechanics and consist of a NLS equation coupled to a KdV equation. This
example has two new interesting features: it is six-dimensional, and for appropriate parameter
values has a Maslov index which is a non-monotone function of .

In the last chapter, we study the stability of stationary solutions of a model for a flow over
a non-uniform bottom, the Korteweg-de Vries equation with a forcing term. In this case, space
translational invariance is lost and therefore stationary solutions can be stable in the usual sense
(u is said to be stable if the Cauchy problem admits a unique solution over R in a neighborhood
of u(+,0) and if for all € > 0, there exists a neighborhood U of u(+,0) such that if v is a solution and
v(-,0) € U, then sup,cp+ [|v(-,t) —u(-,t)|| < e). Again, this study is based on the Hamiltonian
structure of the PDE and the 2-dimensional version of the Maslov index theory, i.e. Sturm-
Liouville theory.

Remarks:
e There is an index of definitions and notations in Appendix H.

e The work on the numerical computation of the Maslov index of periodic orbits has already
been published in [37].

e The content of section 1.3.1 has been published in [35].

e The description on how to compute the Maslov index in dimension 4 has been published
in [38]. It includes the longwave-shortwave example.

e The work on the Maslov index of multi-pulse solitary waves has been published in [39].
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Introduction

Many physical models can be formulated as Hamiltonian systems or gradient flows.
Hamiltonian systems are problems counsisting of finding Z : [a,b] — M such that

oH dz
Vt € [a, b]Vév <(E)z(t) ,6U> =Wz (E(t),év) (1.0.1)

where M is a manifold and w is a non-degenerate antisymmetric bilinear form over the tangent
space of M and H : M x R — R is a functional called the Hamiltonian. For example, the
following systems can be put under an Hamiltonian form (in these cases, w does not depend on
Z, and therefore the Z-dependency is dropped out):

19
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e N-body problem: H(p,q) = V(q) + 2 and

2m

w((q1,p1), (q2,p2)) = (p1,q2) — {q1,p2), where (-,-) is the standard scalar product on R3¥.

e Korteweg-de Vries equation: H(u) = [uf + f5u*? and w(u,v) = [ u( “Ly(z)dx
o Kawahara equation: H(u) = [, (2 uz, + Fuz — Smutt? 4 °u2) dx

e Non-linear Schrodinger equations: H(¢) = [p (|¢2|? £ [¢|*dz) and w(g, ) = [ Im(¢v)dx

e Longwave-shortwave resonance equations:
H(u,v,w) = [ (u2 +02 + tw? — ww? +u? +0?) + scw? + v(u? 4+ 0v?)) d,
w((ug, vy, w), (ug, va, we)) = fR (ulvg — Ugv1 + wl(ﬁz)’lwg) dx.
If the functional H is time-independent, then H(Z(.)) is a conserved quantity. Furthermore,

an equilibrium of the system is then a critical point of H.
Gradient-type! systems can be written as u; = VF(u). They include for example:

e Reaction-diffusion systems (including the Fitzhugh-Nagumo equations): F(u) = [ ul Aug,+
f(u) with (u,v) = [uv as a scalar product.

e Swift-Hohenberg equation: F(u) = [u2, + Pu? + au® + fu® + yu* with (u,v) = [uv as
a scalar product.

In this case, F'(u(t)) is a decreasing function of time. As for Hamiltonian systems, stationary
solutions are critical points of F. Besides, the linearization of a gradient-flow system near a
stationary solution ¢ is u; = V; Fu.

Hence, in these two cases, searching for a stationary solution is equivalent to look for a critical

S(¢)/Iz<¢,...,‘fo,t> dt (1.0.2)

where S is a Hamiltonian or the functional from which derives the gradient flow.

point of an action:

It is then possible to obtain Fuler-Lagrange differential equations. Then, by making a change
of variables, these equations can be put into an Hamiltonian form (see appendix B).

An interesting question concerning solutions of Euler-Lagrange equations is to determine what
kind of critical points (e.g. minima, saddle, ...) of the functional S are obtained. The Maslov
index, introduced in this chapter, can give the number of negative eigenvalues of the Hessian of
S at the critical point.

The Maslov index is a generalization of the number of intersections of Sturm-Liouville’s theory
to systems with more than one degree of freedom. It is sometimes referred as the Conley-Zehnder
index, which is defined for symplectic matrices ( i.e. a matrix M such that M*JM = J. More
details on symplectic matrices are given in Appendix A), whereas the Maslov index is usually
defined for Lagrangian planes. It is used in a wide range of physical applications: semi-classical
quantization, quantum chaology, classical mechanics [6], etc.

I Hamiltonian systems can be seen as gradient-type systems. In that case the gradient is constructed from the
symplectic form rather than from the scalar product.
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The Maslov index has also been used in [77, 16] to determine the stability of travelling waves of
Schrédinger or Fitzhugh-Nagumo equations. A Maslov index can be defined for one-dimensional
solitary waves (but also periodic waves and fronts) when they are critical points of some functional
S.

According to [82, 42, 78], the number of negative eigenvalues of the second variation D?*H of
the Hamiltonian near ¢ is related to the number of unstable modes near the solitary wave ¢. In
the gradient-flow case, the Morse index of D?F gives the exact number of unstable modes.

Suppose that we want to solve the following spectral problem:

Find du such that Yo  §%S,(0u, 6v) /6u61} (1.0.3)

Then, by using the set of coordinates introduced in appendix B, the above problem can be
written as:

Y62, / (w(djzl 875) — D*H (67, 5Z2)> dz + boundary terms = )\/5Z1D5Z2
I £ I

with D a positive semi-definite matrix and w the standard symplectic form (7 is the matrix
defined by equation (0.0.7).) on R*":
w(z,y) =27 Jy. (1.0.4)
If we denote C(z,\) = D*Hy, + AD, then 9,C(z,\) = D is a positive semi-definite matrix
and 077 is a solution of the following linear Hamiltonian system:
Jz, = C(xz,\)z (1.0.5)

However, not every solution z corresponds to an eigenvector of the spectral problem since u
and therefore z must satisfy some boundary conditions.

In fact, the boundary conditions on z are often equivalent to the fact that z belongs simul-
taneously to two Lagrangian planes Ri(xz, A) and Ra(x, A) of solutions. This is the case for the
solitary wave problem and for the separated boundary conditions problem discussed in appendix

G.

Definition 2 A n-dimensional subspace G of R?" is said to be a Lagrangian space if:

Ve,ye G w(x,y) =27 Ty=0
The great interest of Lagrangian planes lies in the following:

Proposition 1 Let V(t) be a space of solutions of the linear Hamiltonian system Jx' = C(t)z,
where C(t) is a symmetric matriz.

If V(to) is Lagrangian, then V(t) is Lagrangian for any t.

Definition 3 A(n) is the set of all Lagrangian subspaces included in R?™.
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By looking at the paths made by z — Rj(x,\) and x — Ra(x, \), it is possible to count the
eigenvalues of the problem (1.0.3).

In this chapter, we will first recall the definition of the Maslov index of paths. Then, we will
define the Maslov index of hyperbolic periodic systems and study the convergence of the Maslov
index when a sequence of periodic orbits is asymptotic to an homoclinic orbit and use it to
define the Maslov index of homoclinic orbit. This limit is of interest, since VANDERBAUWHEDE
& FIEDLER [120] proved that any homoclinic of an Hamiltonian system can be approximated by
such a sequence of periodic orbits. Finally, we will compare this limit to the definitions of the
Maslov index given by BOSE AND JONES [16] and CHEN AND Hu [40].

1.1 The Maslov index of paths

In this section, we recall the definition of the Maslov index of paths with respect to a Lagrangian
plane. Here, we use the identification of A(n) with U(n)/O(n) to define it.
Then, we define the Maslov index of a pair of elements of the universal covering A(n) with

—

respect to a Lagrangian plane.
The latter definition will be useful to compare this work with [40, 16].

1.1.1 The Lagrangian manifold A(n)

Here, we describe the Lagrangian manifold A(n) as a quotient space of two sets of matrices.

Definition 4 The k-th Grassmannian G (E) of a vector space is defined as the set of k-dimensional

subspaces of E.

A(n) is a subset of G, (R?").
{2n x n-matrices of rank n} — G, (R*")

Let 7: .
T Ci ... C, | — Range i ... C, = span(Cy,...,Ch)

7 is onto but not one-to-one. In fact:

7(A) =7(B) <3P € GL,(R) AP=B

Now, let us characterize matrices whose range is a Lagrangian space:

Range( <;(>) €An) & <;(> J <;(> =0 Xy =vY"TXx (1.1.6)

Definition 5 X, = {(ii) € My n(R) | XTY =YTX and (5) has rank n}

Definition 6 The train A(U) of a Lagrangian plane U is defined as the set of Lagrangian planes

not transverse to U.
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Range(A) and Range(B) are transverse if and only if det (A B) # 0.

Let Z = <X> c X,.
Y

Then Z'Z is a real symmetric positive definite matrix and (X +iY)(Z*Z)~ 7 is unitary. There-

fore:
U(n) — A(n)
Proposition 2 0 : Re(Z) is a well-defined and onto mapping.
Z — Range
Im(Z)
Furthermore:

G(Zl) = G(Zg) < dP e O(TL) Z\P =27y

Hence: A(n) =U(n)/O(n) (and A(n) = X, /GL,(R)).

Furthermore, A(n) is a differentiable manifold of dimension @

1.1.2 The Maslov index of paths

Here, we define the Maslov index by using the eigenvalues of a matrix.
(Xn)2 — GL,(C)

Let ¢ ((Z) , (if)) o (X — 1Y) (W —iZ)(W +iZ) "M (X +iY)

The image of 1 is included in the set of symmetric (not Hermitian) matrices. (A, B)*(A*A)y(A, B) =

A'A and A'A is a real positive definite matrix. Therefore 1)(A, B) is unitary with respect to the
scalar product (z,y) — y*(A*A)x. Consequently, 1)(A, B) is similar to a diagonal matrix whose
diagonal elements are of modulus one.

Besides, if Range(A) = Range(B) and Range(W) = Range(Z), then (A, W) and ¢(B, Z) are
similar and their eigenvalues are the same. The following mappings on A(n) are therefore well
defined:

An) - T
Range(A) — det (A, <é>) '

Definition 7 The Maslov determinant is defined as s :

A(n) = U™/ ~

Definition 8 Kj, :
chition Range(Z) Range(A) — Eigenvalues of (A, Z)

where ~ is the relation of

equivalence defined by:

(21,225, Tn) ~ (Y1, Y2, - - -, Yn) & 0 one-to-one (x1,T2,...,Tn) = (90(1),3/0(2), e aya(n))

Both s and KRrange(z) are continuous functions (this can be checked by taking a local set of
coordinates in A(n)) which are dependent on the choice of a basis.

For convenience, we will not mention again the quotient for K.

Proposition 3 The dimension of U NW is equal to the number of elements of Ky (W) equal
to 1.
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Definition 9 Let W be a Lagrangian space and v : [0,1] — A(n) be a continuous path and let
#:[0,1] = R be a continuous function such that ") = s(y(x)).
Let ay, s, ..., an_q €]0,27[, B1,82, .-, Bnb €]0, 27 such that
Kw(y(0)) = (el elo2 .. elvn—a 1 ... 1) and Kw(y(1)) = (elPr, P2, ... elbr-v 1 ... 1).
Then, the Maslov index mw () of v with respect to W is defined as:

n—b n—a
k(1) =i Bi _ K0) =D i)
2T 27
Remark: Depending on the author, the term %(b — a) might be replaced by —a or b. The
convention we use comes from ROBBIN & SALAMON [108].

mw () = +%(b—a)

Proposition 4

e m is invariant by a symplectic change of coordinates, i.e. by a left multiplication of the
Lagrangian planes by a symplectic matrix.

e Two paths 7,6 with the same endpoints are homotopy-equivalent if and only if there exists
W s.t. mw () = mw(9).
In that case, for all W € A(n), we have my () = mw (9).
o Ifv:1]0,1] — A(n) is a closed path, e.g. v(0) = v(1), and if k is a continuous function
such that ") = s(y(x)), then mw (v) is independent of the choice of W and:
_ k(1) —k(0)
mw () = =5 ——

Definition 10 If~ is a closed path in A(n), its Maslov index m(7y) is defined as m(y) = mw (7),
where W is any element of A(n).
Definition 11 Suppose that v = RangeoA intersects non trivially W = Range(U) at to and
that y(to) intersects W trivially in [to — e,to + €] — {to}. Let r = dim(y(to)).

Let k1, Ko, ..., kn be continuous functions such that e™1®) eiw2(t)  ¢itn(t) gre the eigenval-
ues of Y(U, A(t)) and k;(to) =0 forie {1,...,r}.

The sign of the intersection of v with W at to is defined as:

1
Sign(’ya th W) = §(Sign+ (’Y, th W) =+ Sign_ (’Y, th W))
with
sign™ (vy,t0, W) = lim, .+ #{ie{1,...,r}ki(t) >0}
—lim,_ .+ #{ie{l,...,r}ri(t) <0}
sign™ (7, to, W) = lim, - #{ie {1,...,r}ri(t) <0}
—lim,_,- #{ie {1,...,r}ki(t) >0}
Proposition 5 Let 7 : [a,b] — A(n).
Suppose that y(t) intersects W non-trivially only a finite number of times. Then:

1. . 1.,
mw (7) = 5 Slgn+ (77 a, W) + Z Slgn(77 t, W) =+ 5 s1gn (77 ba W)

a<t<b
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1.1.3 Intersection of Lagrangian planes in the differentiable case

Another interesting case is when the path is differentiable. When the derivative satisfies some
non-degeneracy conditions, it is possible to compute the intersection sign from the derivative of
the path.

Let 7 : t — Range ); a path in A(n) and Range(W) € A(n). Denote U = (ii) .
Suppose that dim(y(0) N Range(W)) = k.
Then there exists a n x k matrix G such that v(0)G spans Range(WW) N Range oy(0). Then
Y (0)G = 0.
Define:
q =GTU(0)TJU0)G+GTU0)TJU'(0)G
= GT(XTY —Y'TX)G +GT(XTY' - YTX')G
Let (r,r7) be the signature? of q. (r,r7) is independent of G.

Proposition 6 The crossing of Range oy with Range(W) at 0 is said to be regular if rt+r~ = k.
In that case, we have:
sign™ (v, o, Range(W)) = sign™ (v, to, Range(W)) = sign(v, to, Range(W)) = r* —r~
Besides, there exists € > 0 such that if t €]s — e, s+ e[—{s}, v(t) N W = {0}.

The proof of this proposition can be found in [93]. The great advantage of this formula
is that it uses an expression which only relies on the symplectic structure of R?". Besides,
this characterization is useful to prove that the Maslov index is an eigenvalue counter (see
Appendix C).

1.1.4 The universal cover of A(n)

While we will mainly use the Maslov index of paths in the sequel, the Maslov index for elements
of the universal cover is useful to compare with prior work. Now, let us construct a universal
cover of A(n).

—

Definition 12 A(n) = {(x,U) € R x A(n) such that e = s(U)}
). { An) = A(n)
(k,U)—U

—

Proposition 7 A(n) is a universal cover® of A(n), i.e.:

—

e A(n) is simply connected.
o IfU € //\_(\n/), there exists a neighborhood Q of U such that Pl s an homeomorphism.

For U € A(n), p~*(A(n) — A(U)) is composed of an infinity of connected components. The
Maslov index can label them.

2The signature of a real symmetric matrix g is defined as the pair of integers (r4,r_), where 74 is the number
of strictly positive eigenvalues of ¢ and r_ is the number of strictly negative eigenvalues.
3The universal cover of a topological space is unique up to a homeomorphism.
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Definition 13 Let (a, A), (3, B) € A(n), C € A(n), andr 4 = dim(ANC), rp = dim(BNC). Let

a1, a9, ... nry €]0,27, B1, B2, - -, Bury €]0,27] such that Ko(A) = (i1, el@2 ... el®—ra 1,...1)

and Ko(B) = (e, ez efrrs 1,...,1).
Define

= B—2i0 " Bi _a- Do o

me((a, A), (B, B)) 5 o

There is an obvious link between the Maslov index for elements of the universal cover and the
Maslov index for paths:

Proposition 8 Let W be a Lagrangian space and v : [0,1] — A(n) be a continuous path and let
#:[0,1] — R be a continuous function such that ¢"®) = s(y(x)). Then,

mw (7) = mw ((£(0),7(0)), (x(1),7(1)))-
Proposition 9 Let (a,U), (5,V) € //XZn/) and W € A(n). Then:

e Ciav) = {A € p7'(A(n) = A(U)) s.t. my((a, U), A) = i}, with i € 5 + Z, are the
connected components of p~1(A(n) — A(U)),

o Ifdim(UNV) =k, then (3,V) € (1 C} o () (5:1))— 552 (au0)
m has a property of additivity:
Proposition 10 Let U,V,W € //\_(\n/) and Z € A(n). Then
o mz(U,V) € iz

,W) = mz(U,V) + mz(f/, W)

h

° mZ(

[l

° mz(U, ):0

Finally, m has also a kind of continuity.

——N

Proposition 11 Suppose that (U,)ren, (Vi )ren € A(n)  and (Z,)ren € A(n)Y converge respec-
tively to U,V and Z and that:
{hmwm dim(p(U,) N Z,.) = dimp(U) N Z

lim, o dim(p(V;) N Z,) = dimp(V)N Z
Then:

lim my, (U,, T):mZ(U,f/)

T — 00



tel-00426266, version 1 - 23 Oct 2009

1.2. THE MASLOV INDEX OF PERIODIC WAVES 27

1.2 The Maslov index of periodic waves

We have now defined the Maslov index of paths and are therefore able to extend it to hyperbolic
periodic waves. In section 1.3, we study the limit when the periodic wave converges to a solitary
wave. In chapter 2, a numerical algorithm is given to compute this quantity and a numerical
example is given in section 3.7.

Suppose that the 1D traveling L-periodic wave ¢ is a solution of an autonomous non-linear

Hamiltonian system:
Ju, =VyH H:R™ SR (1.2.7)

Suppose now that we look for the solutions of the following spectral problem:

2, =B(w, Nz, B(z,)) = -JC(,\), J = (" ;) . zeR

I (1.2.8)
z is bounded.
where C(x, \) is a symmetric matrix which usually satisfies:
C(z,0) = D*Hy(y). (1.2.9)

The latter formula means that, for A = 0, system (1.2.8) is the linearization of system (1.2.7).
This spectral problem can also be reformulated in terms of Floquet multipliers. Consider the
flow matrix ®(x1, z2, \) defined by:

0P
@(zlazla >\) = 12717 a—xl(xlvav)\) = B(Z'l, )\)Q(xlva?)\)

Define the monodromy matrix at 0 as:

M(\) = &(0, L, \) (1.2.10)

Taking for the monodromy matrix ®(x,z + L, ) would lead to a similar matrix. The eigen-
values of M(\) are therefore an invariant for the periodic system, they are called the Floquet
multipliers of the system.

The set of A such that the problem (1.2.8) has a non-trivial z solution is called the spectrum,
which we denote by o:

o={X | M()) has at least an eigenvalue on the unit circle.}. (1.2.11)

It is composed of closed intervals called bands and has no isolated points.

Definition 14 The unstable space U(-,\) of system (1.2.8) is defined as the set of solutions of
(1.2.8) which decay to 0 exponentially at —oo (Its dimension may vary with ).

Suppose that the studied wave is L-periodic. Then, C(z, \) is L-periodic with respect to .
When dim(U(-,A)) € {n — 1,n}, there are two cases when a Maslov index can be defined:

e The unstable space U(-,\) is a n-dimensional space. This is equivalent to A ¢ o. The
periodic system is said to be strictly hyperbolic.
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Definition 15 When U(-, \) is a n-dimensional space, it is also Lagrangian. The Maslov
index at A of system (1.2.8) is defined as m(U(-, \)), where U(-, \) is taken over [0, L].

e The L-periodic travelling wave ¢ is a solution of (1.2.7) and the linear system (1.2.8) at
A = 0 is the linearization of system (1.2.7). ¢, is then a solution of the linear system at
A = 0 and therefore, U(-,0) is not n-dimensional. However, if it is n — 1-dimensional, the
following definition can be used:

Definition 16 If the dimension of the space R(z) = U(z,0) of solutions of Tz, = D*Hyz
decaying to 0 at —oo is n — 1, then (R, @ R)|0,z) 95 a closed path over one period in
the Lagrangian manifold and the Maslov index of ¢ at 0 is defined as Iper(¢) = m((Re, &

R)ifo,L])-

When the system is not hyperbolic, there are alternative definitions [118, 104] of the Maslov
index which include corrections for the case of Floquet multipliers on the unit circle.

1.3 The Maslov index of solitary waves

Consider now a solitary wave ¢ which decays exponentially at +co which is a solution of an

autonomous non-linear Hamiltonian system:
Ju, =VyH H:R™ R (1.3.12)

Suppose now that we look for the solutions of the following spectral problem:

z, = B(z,\)z, B(z,\)=-JC(x,\), T = (0 I) , zER™

I o (1.3.13)
where C(x, \) is a symmetric matrix which usually satisfies:
C(z,0) = D*Hy(y). (1.3.14)

The latter formula means that, for A = 0, system (1.3.13) is the linearization of system (1.2.7).
In this section, we first compute the limit of the Maslov index of a sequence of periodic orbits
approximating an homoclinic one. This leads to an unambiguous definition of the Maslov index
when A is out of the spectrum.
The situation A = 0 is also studied and we give the limit when it exists from the energy of the
periodic solutions.
Unfortunately, the hypotheses for the A = 0 case are too stringent as we shall see in section 3.7.
However, BOSE & JONES [16] and later CHEN & HuU [40] proved that it was possible to define
a Maslov index with an intersection-based definition for the A = 0 case.
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1.3.1 The limit of the Maslov index of a sequence of periodic orbits
approximating an homoclinic one

General hypotheses made on the homoclinic orbit

We suppose now that ¢ is a solitary wave and we consider a sequence ¢® approximating ¢.

To determine the limits of @ — Ipe,r (¢™, A) and a — Ipe,r(¢*), some hypotheses will be needed.
These two limits will in fact be handled separately.

However, the two cases share common hypotheses:

Hypothesis 1 e B(z,\) is a smooth function with respect to x and analytic with respect to
A

e There exists Boo(N), v > 0 and F > 0 such that Vo, A ||B(z,\) — Boo (V)| < Fe~ 72l

e The open set X = R — 055 of real numbers is not empty, where the essential spectrum oess

is defined as:

Oess = {A€C|Bux(N) is not hyperbolic}
(1.3.15)
= {AeC : det[Boo(N) —ikI] =0 for somex € R }.
e The discrete spectrum
op = {\ € X|System (1.2.8) admits a non-trivial bounded solution} (1.3.16)

is a strict subset of X.

The discrete spectrum? only contains isolated points (see [64, 1]). 0 = 055 U gy is called the
spectrum.
Define the stable and unstable subspaces of Bs,(A) by
E*(Boo(V) :={ueR® : lim eB=Wry =0}

Tr——+00

and
E“(Boo(V) := {ueR* : lim eB=Wru=0}

E*(Bso(A)) (E*(Boso(A))) is also the direct sum of the generalized eigenspaces associated with
the eigenvalues of By, (A) with negative (positive) real part.

Assume A € X,

Since JBoo(A) is symmetric, dim Ey,(Boo(N)) = dim Eg(Boo(A)). Therefore E,(Boo(N)) and
Es(Boo()N)) have the same dimension: n.

Therefore, we can write: R*" = E,(Boo(N)) ® Es(Bao(N)).

Moreover, U (x, A) has dimension n, is Lagrangian and lim,_, . U(z,\) = E,(Bs())). Sym-
metrically, the set of solutions that decay as @ — +o00, which is called the stable space S(x, \),
is Lagrangian and limg_, 4 oo S(z,A) = Es(Boo(N)).

4The fact that op is only made of isolated points is a consequence of the analyticity of the Evans function,
defined in section 2.4.1. In spectral theory, the discrete spectrum of an operator L is usually defined as the set of
isolated points X\ of the spectrum of the operator such that L — X has a finite-dimensional kernel. The complement
in the spectrum is referred as the essential spectrum. Here, the two definitions match.
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As we wish to define the Maslov index as a limit of the periodic case, we will also suppose
that there is a family of periodic waves ¢ which approaches the solitary wave ¢. More precisely,
consider a family of systems parametrized by « € [0, ag]:

Tz, = C¥(z,\)z (1.3.17)
We suppose that:

Hypothesis 2 o C%¥(z, ) is a smooth function with respect to x and a, and analytic with
respect to A and C%(z,\) = C(z, \).

o C%(-,\) is Ly-periodic when a > 0 and lim,_,¢+ Lo = +00.

® VM >0 lima—oSUP,c_ Lo Lajsex,|n<m [|C*(z,\) — C(z, )| = 0.

Maslov index for solitary waves when A € X — o,

In this section, we will extend definition 15 and suppose that A € X — 03,.

By hypothesis, the space of solutions decaying both at —oo and 400 is reduced to {0}.

Then limy 4o U(z,\) = Ey(Bso(A)) (lemma 3.7 in [1]).

Therefore, x — U(z, ) is a closed path in A(n) over R for each A € X — o).

The quantity m(U(-,\)) is therefore well defined. Let us now show that it is the limit® of
mU*(-,\)) when a — 0.

Let d(-,-) be a metric on A(n) compatible with its compact manifold structure (It can be
obtained by embedding A(n) in R™V).

Now, use lemma 2.11 p.172 of GARDNER [64]:

Theorem 1 (Gardner) If hypotheses 1,2 are satisfied, let X € X — o,. Then, for o small

enough, the space U*(-, \) of solutions of (1.3.17) decaying at —oco is n-dimensional and converges

x-uniformly to U(-, \):

lim  sup  dU*(z,\),U(x, ) =0. (1.3.18)
Lo L

00 Lp Lo
Corollary 1 Let A € X — o,. For o small, Ipe, (9™, N) is well-defined and equal to m(U* (-, \)).

Corollary 2 lim,_.o SUD,g[_La Laj dUe (L, \), Uz, ) = 0.

Proof.
By using the triangle inequality,

AU (5 N) U, V) < dU (5, 0), U5 ) +dU(5, N, Bu(Boo (V) +d(Eu(Boo (M), U(x, X))

Using lim|,| oo U(x, A) = B, (B ())), corollary 2 is immediate.
U(z,\) if ze L, Lo -
U, N it o g -5 5

Now define:  V*(z,\) = {
2
From (1.3.18) and corollary 2, we get: limq—.osup,ep d(V*(z, A),U(z, X)) = 0.

50f course, as m is an integer-valued function, it means that m(U%(-,\)) is equal to m(U(:,A)) for small
enough o.



tel-00426266, version 1 - 23 Oct 2009

1.3. THE MASLOV INDEX OF SOLITARY WAVES 31

A(n) is compact and therefore s is uniformly continuous over it. Consequently:

lim sup |s(V*(z, X)) — s(U(x,N))| =0.

a—0cR

Hence, if x and sk are continuous such that &/ = ¢'* and V% = e'*=, then
b )

lim sup [k“(x, A) — k%(0) — k(x, ) + k(0)] = 0.

a—0 R

Therefore:
Tim [m(@(-, A) = m(V2(, \))| =

limO lim k(z,\) — lim k(z,A) — lim x%(z,A) + lim ,‘ia(x,)\)‘ =0.

This proves that the limit of Ie, (¢%, A) = m(V*(-, A)) = m(U(-, \)) as o — 0 exists. O
This limit is the basis for our definition of the Maslov index:

Definition 17 The Maslov index of system (1.3.13) for A € X — 0, is defined as Inom (9, \) =
m(U(-,A)).

The limit of the Maslov index when the system is also the linearization of an au-
tonomous system (A = 0)

Using equations (1.2.7)-(1.2.9), it is easy to see that ¢, is a solution of system (1.3.13) at A =0
and therefore 0 € o,,.
Let M*(\) be the matrix such that z(L,) = M%(\)z(0) for any z solution of Jz, = C*(x, \)z.
To determine limq ¢ Iper (¢%), make the following additional hypothesis:

Hypothesis 3 e There is a unique family of Ly-periodic waves ¢* solutions of (1.2.7) such
that ¢ converges to ¢ and C*(x,0) = D2H¢Q(I).

e The functions h(a) = H(¢%) and (o) = Lo are differentiable and in 10, [, we have
h #£0,1' <0.

e 0,\C%(-,\) is nonnegative-definite in the sense of symmetric matrices.

e 0 € X and the space of bounded solutions of the linear system (1.3.18) at A = 0 is equal to
Roy, .

e For small enough o, M%(0) has only two eigenvalues at +1, the others being off the unit

circle.

To determine the value of I, (¢*), it is useful to study the behaviour of the two critical Floquet
multipliers near A = 0, which are equal to 1 when A = 0. It turns out that this behaviour is
governed by the sign of h/(«), as summarized in figure 1.1.

According to hypotheses 3, R* = U*(-,0) has dimension n — 1 and Ipe,(¢®) is well-defined.

Let first assume that h'(a)) > 0. Then there exists a basis (x,y) of F1(IM*(0)) and v > 0 such

Y

that TyJx = 1 and 1

is the matrix of M*(0)g, (M= (0)) in (2,¥).

6The case dy C“(-,\) nonpositive-definite can be handled similarly, by replacing A by —A\.
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f'>0. fr<0.

) ) A=0 A=0 » )
Negative Krein Positive Krein
signature. ﬁ signature. ﬁ

Increasing Hamiltonian. > Increasing Hamiltonian. >

Figure 1.1: Position of the two critical eigenvalues of M*(\) in the case where X is close to 0
and 0,C*(-,-) is positive semi-definite.

For A near 0T, there is one pair of eigenvalues of M*(\) on the unit circle, the upper eigenvalue
having a positive Krein signature”.

For A near 0, all the eigenvalues of M*(0) are off the unit circle, the unstable space (-, \)
has dimension n and limy_,q- U*(-, A) = R¢p% & R®, z-uniformly.

If /() < 0, then the sign of v and the Krein signature are reversed, and the two critical
eigenvalues are on the unit circle when X is close to 07 and limy_ o+ U*(-,A) = Rp% & R,
z-uniformly.

Therefore, for small enough «, the Maslov index of ¢ is

Lo (67) = limy Lg- Tper (¢, A) if /(o) >0 '

per limy Lo+ Dper (9%, A)  if K (a) <0
Therefore, we define the Maslov index in the periodic limit of the solitary wave ¢ as:
Ternom(9) = { (=0 o8 R > 0
limy o+ Thom (0, A) if hT]O,ao[ <0

Unfortunately, this limit cannot be a basis for the Maslov index for all homoclinic orbits,

because there are some cases where hypothesis 3 is not satisfied, like in section 3.4.

1.3.2 An intersection-based Maslov index when \ € X — o,

In this section, we assume that hypothesis 1 holds.

Since the Maslov index is supposed to count the A such that S(z, \) NU(x, ) # {0}, it is
natural to look at the Maslov index of the path (-, \) with respect to Soo(A). When A ¢ o, we
have:

M) U A) =mU ) = Thom (¢, A)

When A € oy, the situation is more subtle because lim,_., U(z, A) may no longer exist. BOSE

—~—

& JONES defined in [16] the Maslov index by using w-limit sets in A(n).
Definition 18 The w-limit set w(f) of the mapping f : R — E is defined as:

w(f) = {a € EB(-rn)neN lim z, =400 & lim f(xn) = a}

"Suppose €'®, with 0 < a < 7, is a simple eigenvalue of M®(\) with eigenvector &, then the Krein signature
of ' is

sign (—i€*J¢) ,

where * indicates complex conjugate transpose. More details about Krein signature are given in appendix A.
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CHEN & HU later found a definition without using w-limit sets in [40].

Definition 19 Suppose \ ¢ oess. Let U(z, ) be a lift of Uz, \) in K(\;) The Maslov index
Thom (9, ) is defined as:

Tnom (¢, ) = msn( lim Uz, \), A) for Ac wU(-,\) (Bose and Jones),
or equivalently as:

Thom (9, A) = lim  mg(gy ) ( lir_n L?(m,)\),l;l(xo,)\)) (Chen and Hu).

xo—+00
or:

Thom(6,2) = mS(LA)(SN(x, A),U(@;3)) 5 (Chen and Hu modified).

TMS(N) (limy— oo U(y, A), limy 4 o0 S(y, A))

Remark: This definition is dependent on the convention chosen for m.

Proof of well-definedness :

In the following paragraph, we prove that Chen-Hu’s definition makes sense. Then we prove
that Bose-Jones’s definition is equivalent.

Let S(z,\) be a lift of S(z, \) in A(n).

We have Uso (A) N Soc(A) = 0. Therefore dist(Uso (), A(Sac(N))) > €.

For g large enough, we have dist(Uso(A), A(S(z0,N))) > 5.

Therefore, ms 4,2 (limgy—, oo U(2, X), S(20, \)) is constant when zg is large enough.

Now, since S(x,\) and U(xz, \) are the space of solutions of the same differential equation,
ms(mj,\)(g(z, A),U(z, \)) is constant.

Therefore limg, . oo M§(zg,x) (liMy— oo U(x, X),U (0, N)) is well-defined since

M (o, 0) (iMoo U(, X),U (20, N)) is constant for zo large enough. This proves that Chen-Hu’s
definition makes sense.
Now, let us prove that Bose-Jones’ definition is equivalent. Let us prove that:

VAewU(z,N)  ms_oy(lim—_ o U(z, ), A)
= limyy— 4 oo M (g \) (iMges oo U (2, X), U (70, N)) = €
Let k = dim(S(z, A) NU(z, A).
Let W(z) a Lagrangian plane such that:

o dim(W(z)NU(x,\)) =n—Fk
e W(x)NnS(\ z) ={0}

Then, limy oo W(2) = Uso(A).
Let x,, — oo such that limnﬂool;{(:cn, A) = A.
Since dim W (zy,) NU(xy, A) =n — k, we have dimU(A) N A >n — k.
In the mean time dim S (A) N A > k since dim(S(zp, \) NU(x, N)) = k.
Besides Uoo (A) N Soc(A) = {0} and dim(A) = k + n — k, therefore dimSoo(A) N A = k.
From proposition 11, we have:
lim, o0 ms(mm/\)(g(zn, A, U(zn, N) = limg, o M (20, n) (Mg oo Uz, \),U(xo, \))
= ms,. (1) (Sec(A), A)
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O
The following proposition is a nice characterization of definition 19, which is based on the s
function and a suitable set of coordinates.

Proposition 12 Suppose that the set of coordinates® is such that Range( (?)) = S () and

I
Range( <0> ) = U (N).
Let k(z) such that s(U(x,\)) = *®). Then:

Tnom (6, V) = lim 2= (=)

T— 00 2T

Proof:
Let (k(z),U(xz, ) be a lift of U(x, \) in A(n).
Let #, — co. Then there exists ¢ : N — N strictly increasing such that (kg(,),U(Zg(n), A))

—

converges to (3,.A), with (3, A) € A(n).
Now, dim(A) Ndim(Sx(A)) = k and dim(A) N dim(Us(N)) = n — k. Therefore:
KSOC(A)(“LU =(,...,1,—-1,...,-1)
Therefore: mg_ (3 ((0,Sa(N)), (5, 4)) = Z=E0=kIT) _n g b 0

2
Ks, oy Ux(N)) = (=1,...,—-1,-1,...,—1), therefore:
M. (0, (limy—— oo K(2), Uss (V) = Demmoe B0 e — i, w(x)

As a consequence:

limy, o0 Kayiny = Ihom(¢; )\) +limg Ii(l‘)

As a consequence, lim, .« k() exists and:

limy s 4 oo K(2) = 2T Thom (6, A) + limy,—, oo k() O

Using appendix C, it is easy to prove that Inom (@, b) — Inom (¢, a) counts the number of eigen-
values in the interval [a,b] and the following proposition.

Proposition 13 Assume that hypotheses 1,2,8 hold. Then:

. .
Iper—»hom (¢) = Ihom (¢a 0) + 5 alzli% Slgn(h/(a))

1.4 Conclusion

We constructed the Maslov index for solitary waves and showed that its definition is consistent
with the limit Maslov index of periodic waves. Besides, from appendix C, we know that it counts
eigenvalues as expected. It is now possible to apply the theory to partial differential equations
(see appendix E for a simple example). However, to be able to do some numerical calculations,
we will need to develop some numerical algorithms, which is done in the next chapter.

0
8Let U, V be two Lagrangian planes. There exists a symplectic change of coordinates such that Range( <I>) =

U and Range( <(I)>) =V
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Exterior algebra and computation

on Lagrangian Grassmannians
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Introduction

In the previous chapter, we have only used matrices to describe the Lagrangian manifold. This
approach can sometimes be tedious. When integrating the equation M’ = AM, all the columns
of M can be attracted in the same direction. Hence, the other directions are lost unless orthog-
onalization (see [88, 25]) or high-precision arithmetic is used. To counterbalance this problem,
exterior algebra has already been used to compute Lyapunov exponents and the Evans function

(see ALLEN & BRIDGES [5, 4], BRIDGES, DERKS & GOTTWALD [21]).
Let E be a n-dimensional vector space and (eq, ..., e,) be a basis of E.

35
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The k' wedge product of E is denoted by /\lc E. The nonzero and distinct members of the
set
{eil/\.../\eik,lgil<...<ik§n} (2.0.1)

form a basis for the vector space /\lc E, with exactly d = #k')'k' distinct elements.
Choose an ordering such as a standard lexical ordering and label the nonzero distinct elements
in the set (2.0.1) by Eq,...,E4. Then, any element U € /\kE can be represented as U =

d
> =1 U; Ej.
In this basis, the wedge product of k£ elements of E can be written as:
k
EF -~ \"E
n n n
(b1,ba, .. bk) = (305 anjej, D25y azjej, ..., D25y Ak, j€;5)
Qiyyiz  Qigyio - Qigig,
Qigyiy  Qigyig -« Qigiy,
— by Abo AL ANb = E . ) . ) e, N ... N\egy
1<iy <...<ip<n : : : :
iy, g iy, o cee Qg gy

The wedge product is not an onto mapping: e; Aes+ e3 A ey cannot be put into the form a A b.
k-linear forms which are equal to a wedge product a; A as A ... A ay of k vectors a1,...,a; are
said to be purely decomposable.

Suppose that U is a k-dimensional subspace of E. Let aq,...,ax be a basis of U.

Then, we say that U = a; A ... A ai represents the subspace U. This representation is unique
up to a multiplicative constant, i.e. if (b1, ba,...bx) is another basis of U, there exists a scalar
such that a1 A ... Aap = aby A ... A bg.

Stated differently, the following mapping is one-to-one (though not onto):

Gi(E) — B(\"(2))
Span(by,...,bg) — by A... Aby

where P(A"(E)) is the projectivization® of A" E.

In this chapter we first study the induced system on exterior algebra. We then give a char-
acterization of the linear forms which represent Lagrangian planes and a way to compute the
functions K, s sign® from the exterior algebra representation of Lagrangian planes.

Then, we give an algorithm for computing the Maslov index of periodic waves and solitary

waves.

2.1 The multi-alternate product and induced system on
k
N FE
Suppose that we want to find the k-dimensional subspace V(t) of solutions of the following
system:

x(0) € Vo, 2 = B(t)x (2.1.2)

IThe projectivization of a vector space I is defined as the quotient of F' — {0} by the relation of equivalence
r~yeda#£0 z=ay.
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where V} is a k-dimensional subspace. Let ®(¢,u) be the flow associated to the system, e.g:

B o®(t,u)
O(u,u) =1, — = B(t)P(t,u)

If ay(t),az2(t), ... ar(t) is a basis of V (t), then:

k
(a1 AagA...Aag) = arA...ABaiA... Aay
=1

(@ Nag A ... Nap)(t) = @t u)ar(u) Ao APt u)an (u)

The two previous equations can be interpreted as a multi-alternate product:

Definition 20 Let My, Ms, ..., My : F — E be linear mappings.
Then, the multi-alternate product My © Mo ® ... O My, : /\k F — /\k E of My, Ms, ..., My is
defined as the linear mapping such that:

M1@Mg@...@Mk(al/\ag/\...ak)

= % Z Ma(l)al A Ma(g)ag VANIAN Ma(k)ak
oEX

where Xy, is the set of permutations of {1,...,k}.

Definition 21 Let A: E — FE be a linear mapping.
The mapping A® induced on /\k E by A is defined as:

A =A0A0...04

The compound mapping is defined as:
AW = k(Ao Id...® Id)
In terms of multi-alternate product, we can rewrite the previous systems as:

(a1 Aag A... Aag) (1) = BB () (a1 A ... Aag)(t)

(a1 Aag A... Nap)(t) = ¥t u)(ar A ... Aay)(w)

Now, let us give the elements and eigenvalues of A®) and A¥ as a function of elements and
eigenvalues of A.
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In the standard basis {e;; A...Ae;,,1 <ip <...<i, <n}, the matrices? of these two map-

pings are:
Qiy,ji o Qig,go oo Gig, gy,
Qiy,j1 Qig,jo oo Qig,jy,
(AW i o cip<n, = ) ) ) ) (2.1.3)
1<ji<...<jp<n . . : .
Qi gi Qigga - Qig g
—1)*sag . i {ir g} = (it ik} A1 - d
(A(k))lléi;<...<z‘f€§<n7 = (k Ve A ga} = A AL i) (2.1.4)
<. < . . . . .
=7 Te=" ZaiT,ir if {'Ll;--'alk}:{.jla"'a]k}
r=1

where A is defined as VAW = (VUW) — (V. NW).
From (2.1.3) and (2.1.4), we deduce that (see [115]):

Proposition 14 Let A € M, (C) be a matriz.

Let P € GL,(C) such that P~YAP is an upper triangular matriz.

Let o, ..., ap be the diagonal elements of P~LAP.

Then (PH=1 A Pl = (P=1AP)") and (PI)~t AV PI = (P=YAP)I"! are upper triangular
matrices whose diagonal elements are respectively (3, _y i )1<ir<...<ip<n and ([Th_; @iy )1<ii<...<ir<n

2.2 Computing the Maslov index of paths on A"(R*")

In this section, we first make some comments on which n-forms are representative of Lagrangian
space. Then we show how we can compute s, K from the exterior algebra representation.

2.2.1 The Lagrangian manifold A(n) as a submanifold of P(A"(R*"))

Case n =2

Take R* with its standard basis and symplectic and volume forms
w=ejANe;+esNe;, w=e ANes+eAes, and vol= %w/\w. (2.2.5)

The vector space A°(R?) is six-dimensional, and the orthonormal basis induced from the basis
of R* is

Ei = eiNex, Ex=eiNe3, Ez=ejANey,
(2.2.6)
Es = exNes, Es=esNes, Eg=e3Ae,.
2The matrix of the general multi-alternate product is (M; © ... © Mpg)1<iy <...<ip<n, =
1<j1<...<jp<n
(Mo))iv s Mo))in,ge - (Ma())iy,ie

) (Mg2))in.gs  (Mg2))inga -+ (Mg2))iaix
EZUEZH . . . .

(Mo'(k))ikyjl (Mo'(k))’ik,jz cee (Mo'(k))ik,jk
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Any U € A\*(R*) can be represented in the form
U=> UE;. (2.2.7)

U represents an element of the Grassmannian Go(R*) if and only if:
0=UAU=1Lvol, I:=U,Us—UUs+U3Uy. (2.2.8)

In that case, the space represented by U is Lagrangian if and only if
0=wAU=1ILvol, I,:=U;+Us. (2.2.9)

The Lagrangian-Grassmannian A(2) is isomorphic to the three dimensional submanifold of P ( A’ (R4))
defined by Il = IQ =0.
Let V € A*(R*) be a fixed Lagrangian plane. Then

AY2)={Ue N RHYNA2) : UAV =0},

is a codimension one submanifold of A?(2) [6]. We have a sequence of manifolds:

Manifold | A2(RY) IP(/\2(R4)) Go(RY) | A(2) | AY(2)

Dimension 6 5 4 3 2

General case

In the general case, the decomposability of one k-form is more difficult to establish. However,
we have:
E— N'TE

Proposition 15 Let U be a k-linear form and py : . Then U s purely-
x—xAU

decomposable if and only if k < dim(ker py).
In that case, there are uq,...,ux such that:

ker(py) = span(uy, ..., ug), U=u3 A...A\ug

If we look for an algebraic condition on the coordinates of U, one may use the minors of the
mapping py since:

dim(ker py) > k <  dim(Range(py)) < dim(E) —k <& (py)dimE -+l —

Now, consider R?” with its standard basis and symplectic and volume forms

€l

n n

* * —. 1 — —

:Elei/\eHn, w:élei/\eHn and volzaw/\.../\w. (2.2.10)
1= 1=
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Proposition 16 Assume that U is a purely decomposable n-form. Then the space ker py (e.g
the space represented by U) is Lagrangian if and only if:

wANU=0 (2.2.11)
To prove this proposition, we will need the following lemma:

Lemma 1 Let U be a n-dimensional subspace of R*™. There exists a basis (g1, .-, Gn, f1,-- - fn)
of R* and k € {1,...,| %]} such that:

_ k n
o W=7 " 1(9iNGivk + fi N fixr) + 2 ior 9 N fis

e span(gi,...,gn) =U.

Proof: Let Ut = {uVv € U w(u,v) = 0}.
Let k = n=dim(U00)
Let W such that (UNUY) @ W = U.
ww xw has full rank. Therefore, there exists a basis (g1, ..., gox) of W such that w(g;, gj1r) =
0i; for 4,5 € {1,...,2k}.
Let W’ such that UNnU+ @ W' = U*L.
wwxw has full rank. Therefore, there exists a basis (f1, ..., fox) of W’ such that w(f;, fj1x) =
8 fori,j € {1,...,2k}.
Let gokt1,---,gn be a basis of U NU and W € (W@ W’)L such that W @ (U +UL) = R?".
{W// —(UnN Ul)*
Let ¢ :
z = (y — w(z,y))
U) + dim((U+ NU)*L) # 2n).
Let (rog41,...,7n) be the dual basis of (gars1,...,9,) in U NU. Now set f; = ¢~ 1(r;) for
2k+1<i<n. (fart1,-..,[n)is a basis of W".
Then (g1,.--,9n, f1,---, fn) isa basis of R2* = W @ (UNUL) @& W' @ W” and we have:

. ¢ is a bijective mapping (Otherwise, we would have dim(U~+ N

e span(gi,...,gn) =U

® w(gi,gjrr) = 045 fori,j € {1,...,k},

o wigig) =0ifje{2k+1,...,n},

o wigi, f;) =0ifie{l,... 2k}

o w(gi, f;)=10di; fori,j €{2k+1,...,n},
o w(fi, fixn) =0 fori,je{1,....k},

o w(fi,f;)=0ifje{n—2k+1,...,n}

Otherwise stated, the matrix of w in this basis is:
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919k Gk+1---92k  92k41---Gn  S1- Sk fewroo for oo fa

g1
: 0 I 0 0 0 0
9k
Ik+1
: -1 0 0 0 0 0
92k
92k+1
: 0 0 0 0 0 I
Gn
1
: 0 0 0 0 I 0
Ir
fret1
: 0 0 0 I 0 0
f2k
for+1
: 0 0 -1 0 0 0
In
We have therefore @ = Zle(gi AGivk + i N figk) + 2 ion Gi A fi- O

Proof of proposition 16:
There exists a basis (g1,...,9n, f1,---, fn) of R* and k € {1,..., [ %]} such that:

_ k
o w="3" (G A Gitk + [i N firr) + >orop 9i A fi
e span(gi, ..., gn) = ker pu

There exists a such that U =ag; A ... A gp.
- k
wAU =« (Zi:1(gi AGivk + fi N fivk) + 21 opgq 9i A fi) ANGLA ... N\gn

:O‘Zlefi/\fwrk/\gl/\.../\gn
Therefore @ A U = 0 if and only if £k =0, e.g. wiuxy = 0. 0

Even in the case n = 3, there is still much to understand. For example, we do not have useful
representations of Gs(R%) or A(3) on A*(RS). These would be useful for proving that A(3) is an
invariant manifold, and for understanding the numerical properties of the induced ODE (2.4.31)
on A(3). Some results about A\*(R®) and A(3) can be found in Chapter 8 of the book [84].
Nevertheless, we can still compute the Maslov index in this case.
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2.2.2 Computing s on \"(R*")

While the Maslov index is invariant with respect to a symplectic change of coordinates, this is
not the case of s whose definition depends on the euclidean structure of R?".

For this reason, we first introduce the induced inner product. Then we give a general formula
for s in \"(R?").

The induced inner product on A\"(R?")

The inner product (-, -) on R2" induces an inner product on each vector space A*(R2") as follows.
Let

U=uyyA---Au, and V=vi A - Avg, ui,vjE]RQ”, Vij=1,...,k,

be any decomposable k-forms. A k—form is decomposable if it can be written as a pure form: a
wedge product between k linearly independent vectors in R?". The inner product of U and V is
defined by
(up,vi) -0 (u,vg)
[U, V] := det : : . U, Ve AN®R™M). (2.2.12)

(ug,vi) -+ (ug, vg)

Since every element in /\k(RQ") is a sum of decomposable elements, this definition extends by
(multi)-linearity to any k-form. Using the orthonormality of the induced basis

1 ifi=j
E, E;|, = e,
[[ il { 0 ifi#j

the inner product between two elements U = Zle UE; and V = Z;l:l V;E; is

d d d d
[[U, V]]k H:Zi:l UiE, Zk:l VJEJH & = Zi:l Zj:l Uivj[[Eia Ej]]k
d
- Zi:l Uz‘/z = <U7 V>d )
yielding the equivalent representation

[U, V]y = (U, V)g, U, VeA\R™M. (2.2.13)

Maslov angle — general formula on A" (R?*")

In R?, the Maslov angle is just the angle associated with the polar representation of a vector in
R? as shown in §E.0.1. In higher dimension there is still a well-defined angle associated with any
Lagrangian plane [93]. Consider the Lagrangian plane which is the range of a 2n x n matrix Z:

X
Z<Y>[z1|...|zn], with (Jz;,z;) =0, for i,j=1,...,n.

The exterior algebra representation of the Lagrangian plane is then just obtained by the mapping

(21, ,2Zn) — 21 A Az € N (R?).
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Denote the exterior algebra representation by
U=z1AN---N2Zy.
Proposition 17 There exists a constant n—form C,
C=C; +iCy, with C;p,Cs € \"(R?"),

such that
det[X —iY]vol = C A U.

It follows from this proposition that there exists a scalar complex-valued function G such that
C AU = G(U)vol. A formula for the Maslov angle is then immediate.

Proposition 18
" = G/G.

It remains to prove Proposition 17. The proof is by explicit construction. Let

cj:ej—ijej, jZl,...,?’L.
Then
T <C13Z1> <C13Zn>
x—iv=( ) (X)stel el ml oz = 0 | 2
1 = I Y = |C1 Cp Z1 Zy | = : .. : y /N
<cnvzl> <cnvzn>

and so, using the induced inner product® on A" (R?") (see section 2.2.2)
<C15Z1> <C13Zn>
det[X — iY]vol = det : : vol = [c1 A -+ A ey, UJ,vol.
(cnsz1) -+ (CnyZn)

This gives a formula for G,
GU)=[c1 A+ Acy, U], .

It is not necessary to give an expression for C since in the computations it is G that is needed.
However, for completeness it is given. Let C be an n—form satisfying

ciA--Acy, AC=[ci A=~ Acp, e A Acy]nvol. (2.2.15)

Then
G(U)vol = det[X —iY]vol = CAU.

The n—form C is in fact the Hodge star of c; A- - -Ac,, although the details of that characterization
are not needed.

3A real inner product is used throughout the paper. Complexification is used so rarely that a Hermitian inner
product is not necessary. One just needs to keep track of the complex conjugations.
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In standard coordinates, this can also be written as:

G(U) = det(X — IY) = Z i"_T(fl)Z;:1 ij 7jUz'1
({irewrin}or)

1 <o <l

Lty 1 —Tennyin —m}={1,...,n} (2.2.16)
s(Range(Z)) = G(U)G(U) " = det(X — iY) 'det(X —1Y).
The Maslov angle on \*(R%)
On R* with the standard basis,
C1 /\CQ = (e1 71‘761) AN (62 71j€2)
= (e1 — ieg) A (62 — 164)

= e Ney—ie; Neyg+ies Neg—e3Ney.

Therefore, if U = Z?:l U,E;, with Eq, ..., Eg the standard basis on /\2(R4), the expression for
G(U) and the Maslov angle are:

G(U) = [e1 A e, U]y = Uy — iUs + iUy — Us,

. Uy — Ug — iUz + iUy

"= . 2.2.17
Uy, — Ug +1U3 — iUy ( )
This expression is equivalent to the formula derived in equation (22) of [16].
A straightforward calculation shows that
C= —el/\e2+e3/\e4—|—i(e1 N ey —62/\63).
The Maslov angle on A\*(R°)
On RS with the standard basis
ciANca ANcg = (e1 —ijel) N (eg —ijeg)/\ (eg —i._763)
= (e —ieq) A(ex —ies) A (e3 —ieg),
or
cCiNCcaoANcg = e Ney/Neg—ei  Nes/Neg+ey/Nes Neg—e3/Neg/N\es
7161/\62/\664*161/\63 /\657162/\63 /\e4+ie4/\e5 N eg.
Now take a standard lexical ordering for the 20—dimensional basis
N’ (R®) = span{e; Aes Aes,e; AeyAey,...,e3 Aes Aeg eq Aes Aeg), (2.2.18)

and express an arbitrary element U € A*(R®) in the form U = Pijie; Nej Aeg. Then

.5,k

G = [[Cl /\CQ/\Cg,U]]g
= Pio3 — Pisg + Pase — P345 — iP1ag +1P135 — i34 + P56,
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and so the expression for the Maslov angle is

oif P23 — Pisg + Pose — P3ys — 1P126 +1P135 — iPe34 +1Pys56

= : : : 156 (2.2.19)
P13 — Pisg + Pass — Psys +1P1og — 1P135 + 1P234 — 1Pyse
In this case the definition (2.2.15) gives
C = e NesANeg—esNesANes+e; AesAes—e; Aes Aeg
+i(e3/\e4/\e5—e2/\e4/\e6+e1 /\65/\66—61/\62/\63).
2.2.3 K function over \"(R?*")
X . 2 :
Let Z = v € X, be a Lagrangian frame on R“". Then the matrix
1 . o —1
Uz ()= Q=X - +iv)
is a unitary and symmetric (but not Hermitian) matrix.
Let e%i, j =1,...,n with ; real, the n eigenvalues of Q. These eigenvalues are the elements
1
of Kg(Z) (where E = Range( <0> )
Then:

s(Range(Z)) = '™ e*2 .. el"n

These angles can be computed in the exterior algebra framework: e~ are the roots of the
following polynomial:

P(\) =det((X —1Y) — A(X +1Y))

The coefficients of P are antisymmetric n-linear functions of Z. As a consequence, they can
be expressed as a linear combination of the minors of Z.

Thus, the angles associated to a Lagrangian space can be computed from any representation
in A"(R?").

The case n = 2 is treated with much detail below.

Eigenvalues of the unitary matrix Q on A”(R?)

X
Let Z = (Y) € X, be a Lagrangian frame on R*. Let Q be the matrix:

1

Q- u(z. <0>> = (X —1Y)(X+1Y),

In this section, we give an expression for the eigenvalues e'®s (j = 1,2 with k; real) of Q.
Let ¢ and cs be as defined in §2.2.2. Then, as shown there,

det[X — iY] = G(U) = [c1 A ez, U]y = Uy — iUs +iU4 — Us ,
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for A>(R*) > U = 25:1 U;E;. Hence
det(Q) = G/G . (2.2.20)
In this paragraph the following formula for Trace(Q) is proved,
Trace(Q) = %(Ul +Us) . (2.2.21)

Use (2.2.14) to relate the columns of Z to the X —Y decomposition

Y- (c1,z1) (C1,22)
X+iy= l<c—2,m> <c—2,zQ>]‘

Hence
Q- 1 ((e1,z1) (c1,22) (C2,22) —(C1,202)
G \(c2,2z1) (c2,20) ) |—(C2,21) (C1,21) |~
and so
Trace(Q) = & ({c1,21) (€2, 22) — (c1,22) (€3, 21) — (c2,21) (€1, 22) + (2, 22) (€1, 21)) |
— L (det (E’Z1> <Ea Z2> + det <E5Z1> <E; Z2> 7
¢ (€2,21) (C2,22 (€3,21) (C3,22)
= % (lex AT2,21 A z2]2 + [€1 A €2,21 A 22]2)
% ([c1 ATz +T1 Aca,z1 A2za]2)
= % (ler N ez +e3 Aey,z1 Aza]2)
%(Ul + Ug) s
using

Re(ci AC3) =Re((eg —ies) A(ex +ies)) =€ Nex+ezAey,

proving (2.2.21).
Given a path U € A*(R?) the eigenvalues of Q can be computed using (2.2.20) and (2.2.21),

det(uI — Q) = p? — Trace(Q)u + det(Q) ,

where p has unit modulus,

Ui + Us £ /AU U + 2U3U, — U2 — U?
U, +1iUz — iU, — Uy '

ilil’z —

Hi2:=¢

Using the fact Us + Us = 0 and U Ug — UsUs + UsU, = 0, we can obtain

U, + Ug :|:1\/4U§ + (Ug + U4)2
U, +1iUz — iU, — Uy ’

fi1,2 1= €12 =
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2.3 Computing the Maslov index for periodic orbits

In this section, we consider problem (1.2.8).
We provide an algorithm to compute:

o I, (A @) when A is not in the spectrum,
o [,.r(¢) when ¢ is an hyperbolic periodic orbit.

To obtain the unstable space, one generally computes Floquet multipliers and their associated
eigenvectors. Here, we proceed differently, by integrating a random space over several periods to
obtain the unstable space. As we shall see, this method is equivalent to a power method.

Computing I,c-(¢,A) on \"(R*") when \ ¢ o

Assume that A ¢ o.

There is an induced Floquet theory on the exterior algebra space. For a hyperbolic linear
system (1.2.8) there are n Floquet multipliers with modulus greater than one, and n with modulus
less than one.

If p1,...,u, are any n Floquet multipliers and (i, ..., {, the corresponding eigenvectors of
M(A), then clearly:

M) (G A AC) =0 (Cin-AC), with o=]]p.

Jj=1

Since the system is hyperbolic, there is a unique simple Floquet multiplier of largest modulus
of M obtained by taking {C1,...,Cn} to be a basis for the unstable subspace. Denote this
Floquet multiplier by o. It is always simple and real, even if some of the Floquet multipliers
are complex.

Consider the induced system

U, =B™ (2, )U, U@0)=C¢ A Aln,
with {¢1,...,¢n} a basis for the unstable subspace. Then
U(L) =04 (CL A ACn);

that is, U(0) and U(L) are colinear. Hence, U(z + L) = U(z) on P(A\"(R?*")). In practice, the
numerical integration is performed on A" (R?") and the formula for the Maslov angle automati-
cally factors out the length.

In practice the unstable subspace, span{(i,...,(,}, need not be computed explicitly. When
the induced system on A" (R?") is integrated in space, any randomly-chosen initial condition will
be attracted to the most unstable direction. Hence, the Floquet multipliers or their eigenvectors
do not need to be computed explicitly. It is sufficient to know that the linear system is hyperbolic.
This strategy is equivalent to the power method for computing the eigenvalue of largest modulus
of a matrix [74].

The rate of convergence of this version of the power method depends on the distance between
the largest (in modulus) Floquet multiplier of M[™ and the next largest Floquet multiplier.
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Explicitly, let py, pa, . . ., iy, be the unstable Floquet multipliers with multiplicities sorted so that

1 < |pa] < Jpe| < ... < |pn|. Then the stable Floquet multipliers are i, ce l% With these
conditions, the two eigenvalues of largest modulus of MI™()) are p1ps - - - 1, and ufl,ug ey

The ratio of the second largest to the largest (in modulus) is

pilpe g 1
g
and by construction this ratio has modulus strictly less than one. However the size of the ratio
depends on the distance between 1 and the unit circle.
The Floquet multiplier of largest modulus 15 - . . jt, is a simple and therefore real eigenvalue.
Denote the right eigenvector by &€ € A" (R?") and let ) represent the left eigenvector, normalized
so that (n, &) = 1.

The solution of the initial-value problem for the induced system
U, =BM™(z,\)U, UeA\"(R*>),
with a random initial condition U(xg) = Uy is of the form
U(z) = "™ (2,0,\)Up .

But ®(L,ty) = MM and so
k
U(kL) = (M["]) Uy, k=0,1,....

The effect of (M[”})k on the randomly chosen initial condition can be computed by the power
method.

Let Uy := ¢p be any randomly chosen vector such that (n, (o) # 0. Generically, almost every
starting vector will satisfy this condition. Define the sequence {¢} by Crp1 = MM ¢,. Then,
from results on the power method, it follows that there exists a constant C' > 0, for any € > 0,
such that

H N Ck—iH Cllm)?—e) %, k=0,1,2,....

This result shows that the power method produces log;,(|u1|> —¢) correct digits at each iteration.
When 1] is close to one, logo(|u1|* — ) ~ ﬁ(“iﬂ —1). The parameter € can be set to 0
if the eigenvalue ul_l Lo - -+ [y, is semi-simple. This result ensures that a random initial condition
will be globally attracted to the unstable subspace, when the linear system is hyperbolic. It also
demonstrates the failure of convergence in the case where the periodic orbit is not hyperbolic,
e.g. when || = 1.

If we now sum up the algorithm, we get:

e Choose a random n-form Uy € A" (R?").
e Integrate equation U, = B (2, \)U, U(0) = Uy until:

— Either ¢, = U(kL) is nearly colinear to x+1 = U((k + 1)L), e.g. there exists « s.t.
I¢k — aCrr1]l < €l|€kll where € is a small number.
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— Or a maximal number of iterations is reached. In this case, the system is considered
as non-hyperbolic and e, (¢, A) is not defined.

e Compute e"(®) = s(U(z,\)) = G(U(x)) using equation (2.2.16) over the interval [kL, (k +
1)L], assuming that U(z) is representation of U(x, ) over [kL, (k + 1)L]

e Compute x(z) over [kL, (k-+1)L] such that ¢*(*) = s(U(z,\)) and |k(z + Az) — k(z)| < 7,
where Az denotes the step-size.

o Return the Maslov index: Iper (¢, \) = Al L)=r(kL)

2m

This algorithm was implemented with Matlab™ . The code is given in Appendix 1.3 in the
case of the Kawahara equation.

Computing I, (¢) when dim(U(z,0)) =n — 1.

When ¢ is a L—periodic solution of an autonomous Hamiltonian system (e.g. equation (1.2.7)),
the linearization of the Hamiltonian system about this periodic orbit can be cast into the standard
form (1.2.8) where C(x,0) is the Hessian of H evaluated at ¢(x).

At X\ = 0, the system will have two Floquet multipliers at +1 since ¢, (L) = M (0)¢,(0) = ¢,(0)
and the orbit ¢ is supposed to be hyperbolic.

If we assume dim(U(x,0)) = n — 1, then there are n — 1 Floquet multipliers with modulus
strictly greater than one. Therefore, there are exactly two Floquet multipliers on the unit circle.

E1(M(0)) is two-dimensional and contains the vector ¢4 (0).

If we ignore the fact that the linearized system is not hyperbolic and apply the same algorithm
as in the previous section, there are two cases:

* M(0)[5, (mago))
convergence to a form representing U (z,0) @ ¢, () in general.

is the identity and then taking a random starting point will not lead to

° M(O)|E1(M(O)) is not the identity and then it will generally converge to U(x,0) @ ¢, (x)

with the difference between U(z,0) © ¢, (x) and the k*" approximation behaving like H%k

Hence, if there is convergence, it is very slow. Instead of using an n-dimensional random
Lagrangian space for initial data, we can take advantage of the fact that we generally know what
¢z is and:

e choose a n-dimensional Lagrangian space which already contains the ¢, vector.

e choose an (n — 1)-dimensional subspace.

These two approaches have the same rate of convergence, namely C' m at the r*" iteration.
For the first one, the setup is nearly identical to what has been done in the previous sections:
we just pick ¢, and n — 1 other random vectors &1, ..., &,—1 and compute ¢, (0) A& A+ A€p—1
for initial data.

For the second approach, we integrate until we get U (x,0). Knowing ¢,.(x), it is then possible
to compute s(U(z,0) @ ¢, ()). Moreover, the dimension of the space to integrate is smaller.

Another approach is to add an external parameter that perturbs the +1 Floquet multipliers off
the unit circle. In the application to stability of waves in §3.7.1 and §3.7.1 the spectral parameter

A plays precisely this role (see Figures 3.19 and 3.23).
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2.4 Computing the Maslov index in the homoclinic case.

In this section, we assume that hypothesis 1 of chapter 1 holds.

We first give the definition of the Fvans function which is an analytic function of the spectral
parameter A\ whose zeros with multiplicities are the eigenvalues of the spectral problem with
multiplicity.

Then we give an algorithm to compute Ipom (2, A) when X\ ¢ o. This formulation enables to
give a condition for the Maslov index to tend to 0 when |A] — 0.

Finally we discuss how to compute Ijom (2, A) when X € o,,.

2.4.1 The Evans function of the self-adjoint system

In order to compare the number of eigenvalues of (1.3.13) with the Maslov index, we will use the
Evans function to determine eigenvalues using the setup in ALEXANDER, GARDNER & JONES [1],
adapted to the symplectic setting in BRIDGES & DERKS [23].

Consider the linear system of ODEs,

u, = B(z,\)u, ucR™, (2.4.22)

where B(z,\) = J1C(z,\) and C(z,)) is symmetric and depends smoothly on x and \. In
general A can be complex but here it will be restricted to be real. Assume that B(xz, \) tends
exponentially fast to a matrix B (\) when x — +o0.

We will assume throughout that o.ss is real and A ¢ 0.

Let A" (IR*") be the vector space of n—vectors in R?". There is an induced system from (2.4.22)

U, =B™(z,\)U, Ue\"(R™). (2.4.23)
Let uq(z, A), ua(x, A), ..., un(x, \) and s1(z, A), s2(z, A), ..., sp(x, A) such that:
U(LL', >‘) - Span(ul(za )‘)7 s aun(xv )‘))
S(z, A) = span(s1(z, A), ... A sp(z, \)
Now, define:
Uz, A) = ur(z, \) Ao Aug(x, N),
S(z, A) = s1(x, A) AL A sp(z, N).

Let 04 (\) be the sum of the eigenvalues of B (A) with positive real part, and let o_(\) be
the sum of the eigenvalues with negative real part. o (\) (resp. o_())) is also the eigenvalue of
Bg.f)()\) with greatest (resp. smallest) real part of Bog ().

Then U(z, A\) and S(z, \) are solutions of (2.4.23) with maximal decay as x goes to —oo and
400 respectively satisfying

limg, s 7+ N2U (2, \) = ¢T(\) € A"(R?"), (2.4.24)

and
limg 4 ooe M8 (2, A) = ¢ () € A"(R?), (2.4.25)
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where ¢(*(\) are eigenvectors
BN = 0 (M. (2.4.26)

A value A € R\ 0.4 is called an eigenvalue if the stable S(x, A) and unstable solutions U (x, A)
have nontrivial intersection. Eigenvalues are detected by the Evans function [1] which is defined
by

D(\)vol = S(z,\) AU(z,\) € A**(R®™). (2.4.27)

To obtain a unequivocally defined function, a normalisation condition is needed. Here, since the
systems at —oo and at +o00 are the same, we have (T (A)AC™(X) # 0. A convenient normalization
that we will use from now on is:

P ACT(N) = vol (2.4.28)

The Evans function is independent of = and is an analytic function of A [1]. Analyticity assures
that the zeros of D()) are isolated. In the definition (2.4.27) the fact that trace(B(x, A)) = 0
has been used.

Furthermore, the Evans function is invariant under exponential scaling of the following form:

U(z,)) =e o+M2U(z,N),
S(z,\) =e7-MN78(x, \).

but the Evans function becomes
D(A) vol = el7-NH+ae g (2 Ay A U(z, A) = S(z,A) A U(x, \),
since o_(\) + o4 (\) = Trace(Boo (M) = 0.

Proposition 19 Let A & o and assume that (2.4.28) holds, then:

sign(D(X)) = (—1)%rem (@A)

Proof:
Let A ¢ o.
Let # be such that ei“5* = % Then (k(z),U(x,N)) is a lift of U(x, N).
We have lim, oo G(U(2,))) = D(A) lim,—, oo G(U(x, A)).
Therefore ei“mmgéx = sigm(D()\))ei“maHfoo o
Therefore (—1)%rem(3¢) = gt et N e e N0 sign(D(N)).
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2.4.2 Computation of [;,,, (¢, \) when X ¢ o.

Fix X\ and a basic periodic solution, which is an approximation to a solitary wave. The steps in

the algorithm are as follows.

1.

2.

Choose a large enough interval [—L, L].

Compute the eigenvalue with largest real part of B (A), denoted by o4 (\), and its asso-
ciated eigenvector (T (\).

Integrate equation
U=B™(z,)) -0, VU, (2.4.29)

on [—L, L], taking (*()\) as initial condition at # = —L, using any standard numerical
integration scheme. The justification for the arbitrariness in choice of numerical scheme is
given below in this section.

ﬁ(L, A) and ﬁ(—L, A) are nearly colinear, and an approximation to the Evans function is

. . . UL
determined from their ratio STETARYE

(The error is smaller than machine precision.)

-1

Compute *®) = sU(z,\)) = G(U(z,A)G(U(z,))) using equation (2.2.16) or an
analogous representation.

Compute a lift of (z) and assume that |x(xz + Az) — k()| < 7 where Az is the step-size.

K(L)fﬁ(fL)'

Return the Maslov index Ijom (d, A) = o

There are several sources of error in the algorithm. Two parameters have to be chosen: L and

the step size Az. The choice of the step size is a familiar source of error. The consistency error

of the numerical integration scheme will be of the form C AzP, for some natural number p, at

each step, where C is a constant depending on the derivatives of B. The choice of the numerical

scheme will also impose some stability condition.

By choosing a finite value of L there will be some error introduced in the initial condition at

x = —L. Choosing ¢t as an approximation of U(—L, \) will induce a relative error of

L/2
27 / IB™ (2, 3) — B () dar,

— 00

where

Z = sup [|e"BX oD

reRT

An initial perturbation will be multiplied by at most:

Z eZ fmg ”B(n)(mv)‘)cho()‘)”dI .

Since the Maslov index is an integer, the proposed scheme will give the Maslov index if the

relative error on U(-,\) is small enough. However, if supg [|U(-, A)|| is very small (for example

when the Evans function is small), the relative error may be too big and lead to a miscomputed

Maslov index. This is the case when A is an eigenvalue or near an eigenvalue.



tel-00426266, version 1 - 23 Oct 2009

2.4. COMPUTING THE MASLOV INDEX IN THE HOMOCLINIC CASE. 53

Attractivity of the Lagrangian Grassmannian A(2)

One of the advantages of subtracting off the growth rate at infinity in the equations on /\2(R4),
as in (2.4.31), is that the Lagrangian Grassmannian becomes an attracting invariant manifold.
When A(2) is attractive, one has greater freedom in choosing the numerical integration scheme.
To prove attractivity, consider the integration of the 2—form representing the unstable subspace

U(z, \)
d

d—U:B(Q)(x,)\)U Ue AN*RY) —L<z<+L.
X

Introduce the transformation
Uz, \) = e+ N7 T, \)

where o4 () is the sum of the eigenvalues of B, (\) with positive real part. Then U satisfies

;l_ﬁ =B\ -0, VU  —L<az<+L (2.4.30)
X

The Lagrangian Grassmannian is the set
UAU=0 and wAU=0.

When evaluated on the differential equation (2.4.30) these invariants satisfy

|&

UAU dUANU+UALT

<

X

since Trace(B) = 0. A similar calculation with w A U yields

d N . .
ﬁw/\U:w/\(B(Q)—J+I)U:—B(2)w/\UfU+w/\U:fUer/\U,

using the fact that B®)w = 0, which is proved in Appendix D. This proves that

UAU(z) =e 2+*UATU and wAU(z)=e "+ wAU , for z>-L.
z=—L r=—1L

The eigenvalue o is real and positive. Hence when integrating the unstable subspace U along
the Lagrangian Grassmannian, both UAU and wA ﬁ(x) are exponentially attracted to the zero
set. Therefore a special integrator is not required for maintaining the constraints; a standard
Runge-Kutta algorithm is quite satisfactory.

This proof holds only in the case n = 2. The difficulty with proving it in higher dimensions is
that we do not have a nice characterization of the Lagrangian Grassmannian. However, numerical
results for the case n = 3 show similar stabilizing behaviour in the integration.
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The Maslov index when ) is large

When A — +o0o (or A — —oo if the essential spectrum extends to minus infinity) we expect
the Maslov index to stabilize. This property is similar to the property of the Evans function for
large X. The hypotheses are based on the analogous result of [103], adapted to the setting of the
Maslov index.

Hypothesis 4 o Suppose there exists A\g € R such that oess s empty for all X > Ao
e For large enough \, Boo(\) has no pure imaginary eigenvalue.

o Let V() be a symplectic 2n x 2n matriz depending analytically on X\ whose first n columns
are a basis for E*(B(x, \)) and whose last n columns are a basis for E$(B(x, \)) Define

F(z,\) =V (A)(B(z,)) = Bx(A) V().

e Suppose that, for large enough \:

Jo [F(z, \)|dz  is bounded, uniformly in A
f\z\>wo |F(x, \)|dz  tends to 0 when xg — oo, uniformly in A
Jg [F™ (2, Ne;|dz  tends to 0.

If there exists Ao such that o.ss is empty for all A < A\g the above hypotheses can be modified
accordingly.

Proposition 20 Assume that hypothesis 4 is met by B(x, \), then

AEI?OOD(A) =1, and )\EIElOO Thom(d,A) =0.

Following the argument in Proposition 1.17 in PEGO & WEINSTEIN [103] and the Appendix
of BRIDGES & DERKS [23], we can prove (VI™()\)=1Y (-, \) converges, uniformly in z, to the
constant vector e; when A — —oo. Then, for large enough A, (V™(X\))7'Y'(-,A) has a null
Maslov index and so does Y (-, A). In appendix F.2, we describe how to apply this proposition to
the Kawahara equation.

2.4.3 Computing [, (¢, A) when \ € g,

When A € 0, D(A\) = 0. As a consequence sup,cp [T (z, \)| = 0.

Therefore, the algorithm of section 2.4.2 will fail to converge.

If dim(U(x, \) NS(z, A)) is known and 9, C(z, A) is positive, then we can use proposition 3 to
compute Ipom (z, A) and we have:

IhOm((b, )\) _ Ihom(¢; A+ E) —;— Ihom(¢, A\ — 5)

whenever

Thom (s A+ €) — Inom (¢, A — &) = dim(U (z, ) N S(x, A)).

So here is how Ijom (¢, A) can be computed
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1. Choose a € > 0.

2. Compute Thom (P, A+ €) — Inom(d, A — €), choosing suitably the step size and L.

3. If Ihom(¢, A+ E) o Ihom(¢, A\ — E) _ I{/’, then return Ihom(¢7)\+5);lhom(¢7)\—8) . Otherwise set

€

€ := 5 and go to Step 2.

2.4.4 Tracking intersections of U(z, \) with S,.()\)

The algorithm in §2.4.2 gives little information about where intersections of U(x, \) with Seo ()
occur.

Besides, the path made by the unstable space in the case of a dark solitary wave or a front is
not generically closed. To extend the definition of the Maslov index to these cases, tracking the
intersections would be mandatory.

The algorithm of this section is quite similar except that the computation of the angle k(z) is
replaced by the computation of the angles k1, ..., Ky.

The initial algorithm can be modified as follows:

1. Choose a large interval —L < 2 < L. Initialize Maslov (the counter used to determine
Ihom(¢v )‘)) to 0.
. . . 1 0
2. Find a symplectic matrix R()) such that R()) 0 and R()\) s represent the stable

and unstable spaces of Boo ().

R()\) define a symplectic change of coordinates in which the coordinates of stable and
1 0

unstable spaces in the exterior algebra are respectively Sy = : and Vj =
0 1
3. Compute the eigenvalue with largest real part, o (\), of B((:ol)()\).
4. Integrate the equation
RM(N)U, = RMO)TH(B™ (2, \) — oy WIDRM VRPN U, (2.4.31)
in the new system of coordinates on [—L, L], taking Uy as initial condition for RI"(\)~1U
at * = —L and using any standard numerical integration scheme.
5. Compute the angles (k1, K2, .. ., k) corresponding to the eigenvalues of 1(R(\) ™1 U, é )

over [—L,L]. If a k; crosses 277 between z and = + Ax, update the value of the Maslov
index to:

Maslov — Maslov + sign (k;(z + Ax) — k() .

Intersection_list = Intersection_list U {(z, sign (k;(x + Az) — k;(x)))}
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6. Return R™(X\)~1U(L, \) A Sy as an approximation to the Evans function.

7. At @ = 4L, return Ij,p,, (¢, \) = Maslov and Intersection_list.

This algorithm was implemented with Matlab™ . The code is given in Appendix 1.4 in the
case of the Kawahara equation.

2.5 Conclusion

We have obtained numerical algorithms to compute the Maslov index of periodic waves and of
solitary waves. We are now going to apply these algorithms to waves arising in several partial
differential equation models.
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Introduction

In this chapter, we first recall the physical context in which the Kawahara equation arises. Then

discuss the Maslov index of the solitary waves and the implication for their stability and what
occurs at bifurcation points, e.g. points where several branches of solutions merge. Finally, we

we make some comments on the structure of the ODE satisfied by travelling waves. Then, we

look at the Maslov index of some periodic waves which converge to a solitary wave.

o7
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Figure 3.1: Water-strider (Gerrida) taking advantage of surface tension to counterbalance gravity.

3.1 Physical context

We consider a two-dimensional inviscid, incompressible, irrotational fluid, subject to capillarity
and gravity.
Let

e x be the horizontal variable and z the vertical one.

e (z,B(x)) be the bottom of the fluid.

e (z,n(x,t)) be the free surface of the fluid.

e ¢(x,z,t) be the velocity potential. ¢ is a function such that V¢ is the velocity of the fluid.
e ¢ be the acceleration due to gravity.

Then, the two-dimensional Euler equations can be written as:

2

%—i—aizo when B(x) < z < n(z,t)

3_2229_366:; ) at z = B(x) .
E:a_na_*'él . at z = n(z,t) (3.1.1)
96 1 ( (o9 ¢ _o__ o7 —

2as((3)+ () ) ron-spry ws=uw)

Now, we assume that the bottom of the fluid is flat, e.g. B(z) = —H.
The dispersion relation for the linearized equations near the constant state ¢ =0 and n =0 is
(see [123]):

H2
w? = gk(1 + "718) tanh(kH) (3.1.2)

The phase and group velocity are therefore:

c(k) = % - i\/ (% + UT{pk> tanh(kH) (3.1.3)
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2
Cdw :I:%c(k) <pg+30k 2kH > (3.1.4)

k) = ¥
(k) dk pg+ok?  sinh(2kH)

If we make the Taylor expansion of w?, then one gets:
3H3go — H3gp) k* 5Hgo — 2H?gp) kS
w? = Hgk? + (38170 3 90) - (570 15 90) +0(k®)

While the Korteweg-de Vries approximation only recovers the first terms of the dispersion

relation, the Kawahara equation takes in account the next term.
Let

e ¢y = \/gH be the speed of long-waves,
e 79 be the characteristic height of the wave,

e [ be the characteristic length of the wave.

Let us introduce the following dimensionless quantities

e B = —%= the Bond number,
pg

e ¢ = B the non-linearity parameter,

o 1= % the long-wave parameter.

¢ and p are assumed to be small quantities.
The Euler equations can be put into an non-dimensional form by choosing the following set of
variables:

pr=HE, z=HE pt=H(gH) 21,
17 ~
pe =cH(gH)2¢, n=cHi.

Assume that ¢ = p* and that the wave under consideration is propagating to the right. Let

a= B#_Q% . Then, at order £2, 7 is a solution of the Kawahara equation [80, 82, 52, 34, 20, 53, 21]:

L o 1 3
g = M + €| 5iass — gpleazae — 5 | = 0

ou ou 0
- — (yat? - = =
5 Son + % (u?t) + P 0, ¢g=1. (3.1.5)

A further scaling can be introduced so that ¢ = 1, but including ¢ is useful for comparing with
results in the literature on the Kawahara equation. In fact, ¢ is a third parameter, which can be
useful to set to other values than 1 in some applications of the Kawahara equation, e.g. plasmas
physics. Here, we will restrict to integer values of q.

SAUT AND TZVETKOV [114] proved the well-posedness of a Kawahara-KP model in L? for a
torus and R?, which is the natural extension of the Kawahara equation to the three-dimensional

water-wave problem.
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The Kawahara equation can be put into a Hamiltonian form by taking:

w(u, v) :/Ru(x)(az)_lv(ac)dx (3.1.6)

1 P
) = [ (Gut+ Fu - a2 ao (3.17)

as symplectic form and Hamiltonian.

3.2 The steady problem

The steady part of the Kawahara equation can be written as:
Ugpxxx — Puzz + cu — uqul = 0. (328)

This ODE also arises in a number of physical examples. For instance, it is also the steady part
of the one-dimensional Swift-Hohenberg equation

¢t = _¢$$$$ + P¢$$ - ¢ + ¢1+q (329)

The same equation arises in the study of beam buckling. A history with references is given by
CHAMPNEYS [34].

The ODE (3.2.8) has been extensively studied and many solitary wave solutions have been
found; a classification is given in [27].

The linearization of Uppps — PUze + ct — w9t = 0 near ¢ = 0 is Ugpar — Plgs + cu = 0. If
¢ = e** is a solution to the linear equation, then k& must satisfy the equation k* — Pk% + ¢ = 0.
Solutions of this polynomial equation are:

1. Imaginary if Pc™% < —2. There cannot be solitary wave solutions to the non-linear ODE
with exponentially decaying tails.

2. Complex and non-real, not imaginary if —2 < Pc 7 < 2. Solitary waves with oscillating
tails have been found.

3. Real if 2 < Pc™ 7. Solitary waves with non-oscillating tails can be found.

There are some special cases where explicit solitary wave solutions have been found. An

~ 1/
example is the explicit solution ¢(x) = (%) ! sech/4 (:Eq1 /m) which exists when

q>1and P = %. However, the interesting solutions of (3.2.8) need to be computed
numerically. They can be computed using a spectral method (approximate the solitary wave
by a periodic function of large wavelength and then use Fourier series to represent it), or in
the case of symmetric solitary waves a shooting algorithm can be used. We used both methods
to compute solitary waves. Symmetric solutions are computed numerically using a shooting
method: the starting point is an element of the tangent space of the unstable manifold and the
ending point is a symmetric point. We chose the fourth order Runge-Kutta method as integrator

With this space step, the error was close to the machine error

and a space step equal to ﬁ.
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Tl <y

30
20
10

Figure 3.2: Numerically computed unimodal solitary waves for the Kawahara equation for the
caseq=1,c=1land —2< P < 3.

b™code,

precision. More details about the spectral and the shooting methods, as well as a Matla
are given in Appendix I.1 and Appendix 1.2 respectively. An example of the family of unimodal

solitary waves as a function of P, computed using a spectral method, is shown in Figure 3.2.

Although these solitary waves are solutions of the model ODE, they are representative of
solutions of the full water-wave problem. D1As, MENASCE & VANDEN-BROECK [55] have found
large-amplitude branches of these solutions in the full water-wave equations.

Stationary wave solutions u are critical points of the Hamiltonian of the Kawahara equation.
Therefore, equation (3.2.8) can be put into a spatial Hamiltonian system. Here, we choose the
following set of coordinates:
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In this set of coordinates, the reversibility of (3.2.8) can be expressed as:

q1(t) q1(—t)
a(t) is a solution < R a2(~1) is a solution,
p1(t) p1(—t)
t —t
pa(t) p2(=1) (3.2.10)
1 0 0 0
with R = 010 0
00 -1 o0
00 0 -1

The spatial Hamiltonian in the original coordinates is:

1
2 1 2 1.2 q+2
Uzz+§PU$ —3cu + —q+2u — UpUgyn -

It satisfies % = 0 along solutions of (3.2.8). Physically, for the Kawahara equation, this quantity
is associated with the momentum flux.

The system (3.1.5), linearized about a solitary wave q@(ac) solution of (3.2.8), takes the form

99 0

with
L6 = Guue — P duw +c¢ — (a+ 1)d(a)" 6. (3:2.11)
There are two spectral problems:
Lo=xp and Lé=A\p, L¢:= j—g. (3.2.12)
x

The operator & is self-adjoint (in a suitable Hilbert space) and so A € R. On the other hand,
L is not self-adjoint, and X which is the stability exponent, can in general be complex. The
relationship between these two eigenvalue problems is discussed in §3.5.1. First, we study the
Maslov index of the spectral problem .£¢ = ¢, which can be put in the form (1.2.8,1.3.13):

w
Jz, = C(z,\)z, z:= Wz ,

Wrre — wa

Wy

with J in the standard form (A.0.1) and

alx)—X 0 0 0
Clz,)) = 8 _01 8 (1) D ale)=1—(p+1)d(@). (3.2.13)
0 0O 1 P
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3.3 The Maslov index of solitary waves of the Kawahara

equation
In this section we study the Maslov index as a function of A for the ODE eigenvalue problem

where ¢(z) is scalar valued, P is a real parameter and a(x) is a localized function which satisfies
a(r) — ax as x — +oo, with exponential decay of a(x) at infinity. For definiteness it is assumed
that ase > 0. The ODE (3.3.14) can be put in the form (1.2.8). The spectrum of the system at
infinity Boo(A) = J " 1Cu(A) has the characteristic polynomial

det[Boo(A\) — puI] = p* — Pp® + ae — . (3.3.15)
With as > 0 and A = 0 the four roots are hyperbolic for all P such that

P+2/a >0,

which is assumed to be satisfied henceforth. When A # 0 the essential spectrum will form the
boundary of the hyperbolic region. The essential spectrum is

Ooss = {NER : AN=as +Pk* + k', k€R}.

When

1
A< edee — g — §P(P —|P)),

the spectrum of By, (A) is hyperbolic. Hence, all the hypotheses for the existence of the Evans
function and the Maslov index are satisfied. We will apply this theory to determine the Maslov
index of a class of multi-pulse homoclinic orbits.

Furthermore, using Proposition 20 and the proof in Appendix F.2, it follows that the Kawahara
system satisfies hypothesis 4 and therefore D(\) — 1 and the Maslov index tends to 0 as A — —oc.

Spectral problems of the form (3.3.14) also arise in the physical examples mentioned above
in section 3.2. In the case of the one-dimensional Swift-Hohenberg equation, % = —Z¢ is the
linearization about the localized solutions. —A in (1.3.13) is then the spectral parameter for the
stability of localized solutions.

3.4 The Maslov index of unimodal solitary waves

First consider the case P = %, q = 1 and ¢ = 1 where the unimodal solitary wave is given
explicitly. The lifts x(x) of the Maslov angle for this system are plotted as a function of = in
Figure 3.3 for various values of A. In Figure 3.4, the corresponding Maslov indices have been
plotted as a function of A. The Evans function shows that .Z has exactly three eigenvalues in
this case. Denote these eigenvalues by

)\1<)\2:0<)\3.
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Figure 3.3: k as a function of = for the following values of \:—2,—1.9,...,0.9. & is A-growing.

The parameter values are P = %, c=1and q=1.

The qualitative behaviour of the Maslov index in this case is similar to the example on R? in
Appendix E. The values of the Maslov are shown in the table below. The Maslov index in this
case is computed using the Maslov angle, and this Maslov index is denoted by Ipem (¢, A).

A )\<)\1 )\1<)\<)\2 )\2<)\<)\3 )\>)\3

Ihom (¢7 )\) 0 1 2 3

Note that the Maslov index in each region predicts the number of eigenvalues of . in each A

interval.

Aregion | A<M | A< A | A< A3 | A< Aedee

# Eigs(.¥) 0 1 2 3

It is immediate from this table that

_ 1im)\~>0+ Ihom (¢7 >‘) + hIn)\~>O+ Ihom(¢a >‘) l

I = =1 .
hom(¢a 0) ) + )

The operator .Z has exactly one negative eigenvalue in this case. Our calculations indicate that
this is the case for all the unimodal homoclinic orbits. It is easy to show analytically that the
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Maslov index
35F T T =

15

0.5

Evans function

0.2 -

-0.2¢ I I I I I I I n
-6 -5 -4 -3 -2 -1 0 1

Figure 3.4: Evans function and Maslov index as a function of A for the explicit unimodal solitary

wave solution when P = %, c=landg=1
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Figure 3.5: The decomposability of a 2-form is equivalent to I; = 0 where I is defined in
(3.4.16). The upper figure shows the logarithm of the difference between a(x) and its limit a,
and the lower figure shows the logarithm of the value of I; when ¢ =1, P = 1—63, A= —10 and
when the space step in the algorithm to compute the Maslov index is equal to dz = .01. The
fast oscillations are associated with round-off errors.

Maslov index of a unimodal homoclinic orbit is greater than or equal to 1 + % An elementary
proof is given in Appendix F.1. The fact that #.2~ = 1 is proved in [42, 70]. This result has
implications for the stability of the solitary waves as solutions of the Kawahara equation and it
is discussed in §3.5.1.

3.4.1 Numerical tests on the accuracy of the algorithm

To test how accurately the Lagrangian Grassmannian is preserved by the numerical scheme, the
values of

L=UAU and L=wAU, (3.4.16)

are computed as a function of x. In these calculations the standard explicit fourth-order Runge-
Kutta algorithm is used. The value of I; is shown in Figure 3.5 and shows that the error is of
order of the machine accuracy, except for a small region around zero, but the error there is still
exceptionally small. Concerning I, it is in fact exactly preserved, even numerically: if the value
of Us 4+ Uj is the machine zero, it remains at the machine zero.
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Figure 3.6: Value of §& when ¢ = 1, P = —1.5, and A = 0 as defined in section 2.4.4. Each

intersection of k; with 0 corresponds to a non-trivial intersection of U (z, A) with S (A).

3.5 Multi-pulse solutions

The ODE (3.2.8) has a family of solutions ¢p defined for P € [—2, oo[ with a symmetric point
at x = 0 (i.e. ¢(0) = ¢/J(0) = 0) which is the unique maximum when P > 2. For any
€ € [-2+¢,2[, it can be proved that there is an infinity of families of homoclinic solutions made
of copies of the unimodal solutions. See [27] and references therein for a classification of these
solutions.

These families can be classified in the following manner by looking at their behaviour near
P =27. A family ¥p of solutions is said to have a mode at sp if

lim (Vp(sp), ¥p(sp), ¥p(sp), vF (sp)) = (¢2(0), ¢5(0), ¢5(0), ¢5'(0)) .

P—2t
A multi-pulse homoclinic family orbit is said to have type n(¢1,¢s, ..., £,) if it has n modes at
the points s1,p, s2.p,..., 5, p, and

lim s;41,p — si,p = 00,
P—2+

and the number of zeros of %1/)%2 - %1/}123 + %7,/}}9’3 in [s; p,sit1,p] is equal to 2k;. It has been conjec-

tured that there is a unique family of each type, up to a space translation. This classification has
been introduced in [27]. These solutions can be computed using shooting, or by approximating
them by periodic solutions and using a spectral method. Examples of bimodal solutions are
shown in Figure 3.7. An example of asymmetric solutions, of type 3(3,1) is shown in Figure 3.8.
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-25 -20 -15 -10 -5 0 5 10 15 20 25

Figure 3.7: Bimodal solutions when ¢ =1, ¢ =1 and P = —1.5.

T T
-30 -20 -10 0 10 20 30

Figure 3.8: Trimodal solution 3(3,1) when ¢ =1, ¢ =1 and P = —1.5.
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These multi-modal orbits occur only for P satisfying —2 < P < 42 and therefore they have
oscillatory tails.

The value of the Maslov index for solitary waves of various families when A = 0 is given in the
following table.

Family Family Family
1 1 3(2,1) | 4 4(3,4,3) 6
2(1) 3 3(3,1) |5 4(3,5,3) 7
2(2) 2 3(1,1) |5 4(3,6,3) 6
2(3) 3 3(2,2) |3 5(3,1,1,3) |9
2(4) 2 3(3,3) |5 5(3,2,2,3) |7
2(5) 3 3(4,4) |3 5(3,3,3,3) |9
2(6) 2 3(5,5) |5 6(3,2,1,2,3) | 9
2(7) 3 3(6,6) | 3 6(3,2,2,2,3) | 8
2(8) 2 4(3,1,3) | 7 6(3,2,3,2,3) | 9
2(9) 3 4(3,2,3) | 6
2(10) | 2 4(3,3,3) | 7

Value of Tpom(4,0) — % for the different families of solitary waves.

From this table, we see that there is a pattern between the type n(¢1,¥¢s,...,¢,—1) and the
Maslov index. We find the remarkable conjecture that the value of the Maslov index is predicted
by the type, determined by the following formula

1
Ihom(¢7 0) - 5 = Neven + 2Nodd + 1 (3517)
where neyen 18 the number of even indices among (¢1, 42, ..., ¢,—1) and neqq the number of odd

ones.

Computing the Evans function for multi-pulse orbits

To see the connection between the number of eigenvalues of . and the Maslov index for multi-
pulse, the Evans function for multi-pulse orbits is computed for an example. Consider the
multi-pulse orbit of type 5(3,1,1,3) at P = —1.5, ¢ = 1 and ¢ = 1. It is shown in Figure 3.9.
The computed Maslov index and Evans function for this case as a function of A are shown in
Figure 3.10. From this result and the previous calculations it appears that the number of negative
eigenvalues of .Z is predicted by the Maslov index with the formula
L™ = Do (6,0) — % . (3.5.18)

This formula is of interest when we consider the relation between the spectrum of L, which
determines the stability of solutions of the Kawahara equations and the spectrum of .Z.

Then, it appears that (3.5.17) is consistent with PELINOVSKY & CHUGUNOVA [42] results in
the case of a 2(7) pulse since they found that #.£~ =3 if i is odd and #.£~ = 2 is even.
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Soliton 5(3,1,1,3)

14

1.2+

1.0+

0.8+

0.6

0.4+

0.2+

0.0

-0.2

-0.4 T

T T
-50 -40

T T T
-30 -20 -10 0 10 20 30 40 50

Figure 3.9: A multi-pulse solitary wave of type 5(3,1,1,3) at P = —1.5 and ¢ = 1.

3.5.1 Spectrum of .Z and the stability of solitary waves for the Kawa-
hara equation

One of the intriguing properties of the Maslov index is its connection with the number of eigen-
values in subsets of the A space, and subsequently the relationship with the stability of waves.

For the Swift-Hohenberg equation (3.2.9), the connection between the spectrum of . and
unstable eigenvalues is exact: #.2~, the number of negative eigenvalues of .Z, is equal to the
number of unstable eigenvalues associated with the basic steady solution of (3.2.9).

On the other hand, the connection between stability and #.2~ for the Kawahara equation is
not as direct. For unimodal solitary-wave solutions of Kawahara, KODAMA & PELINOVSKY [82]
have studied this connection. Suppose the following integral exists

N(P,c) = /R d(x, e, P2de,

and is a differentiable function of ¢. Define

Jo ifda,p)<o
Sl 1 if2E(,P) >0

The functional N(P,¢) is sometimes called the momentum of the solitary wave. In [82] it
is argued (see proposition 3.8 there) that a unimodal solitary wave is stable if » = 41 and
#2~ = 1. This result assumes that there are no pure imaginary eigenvalues of L. Hence, in
this case the stability of the solitary wave is determined by the sign of dd—]Z. This observation
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Figure 3.10: The computed Evans function and Maslov index associated with the multi-pulse
solitary wave in Figure 3.9.
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is consistent with the theory of [20] where instability results for a class of unimodal solitary
waves were obtained. Some later results about values of %—]X, which have been published by
LEWANDOSKY [89], can be seen on figure 3.11.

More refined results on stability of two-pulse solitary waves were obtained by PELINOVSKY &
CHUGUNOVA [42]. They relate #.£~ with the complex eigenvalues of L, where L is defined in
(3.2.12). Consider a symmetric solitary wave and suppose that L has only simple eigenvalues

except a double eigenvalue at 0 and suppose 2¥ (1, P) # 0. In [42], it is proved that

Nunst = #%~ —r — N (3.5.19)

mag

where Ny, is the number of eigenvalues with strictly positive real part of L and N;mg is the
1

number of pure imaginary eigenvalues of L with negative Krein signature’. Combining with

(3.5.18) gives
1
Nunst = Ihom(¢ao) - 5 —-r—N;,

mmag ®

It is immediate from this formula that if N; =0 and Thom (0, \) — % =1 then the basic state
is stable if ‘Z—JX > 0 and unstable if ‘Z—ZZ < 0.

These observations are consistent with the results of BURYAK & CHAMPNEYS [30]. They
consider the stability of 2—pulse solutions of the form 2(¢), ¢ = 1,...,9. They find that the
solutions of the type 2(¢) with ¢ odd are stable and those with ¢ even are unstable.

Using the formula (3.5.17) and the fact that N, is even, we conclude that any solution such

imag
that Tnom (¢, A) — % — r is odd is unstable.

3.5.2 Evolution of the Maslov index near bifurcation points

Iooss & PEROUEME [76] proved the existence of two even solutions near P = —27 and there
is numerical evidence that these two solutions correspond to 1 and 2(2) (see also Dias &
Iooss [52]).

Due to the existence of an horseshoe map (proved by DEVANEY [50]), there exists an infinity
of homoclinic orbits for any P €] — 2,2[. However, BUFFONI, CHAMPNEYS & TOLAND [27, 34]
presented numerical evidence that each multi-pulse n(iy,és,...,4,—1) orbit which is not 2(2)
ceases to exist at a point Pn(mh’miw“’minil).
It turns out that branches of multipulse orbits connect to each other at P = P..; in two

different manners:

e Coalescence (corresponding to figure 3.14):
When P < P..;;, no orbit exists.
When P = P,.;, there is one non-transverse homoclinic orbit, e.g. an orbit for which
dim(U(x,0) N S(x,0)) > 1.
When P > P..;, there are two homoclinic orbits converging to the non-transverse orbit

when P — P

crit”

ILet u be the eigenfunction associated to the purely imaginary simple eigenvalue if. Then, the Krein signature
of if is defined as the sign of (u, Lu). More details about the Krein signature in finite dimension is given in
Appendix C.
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Figure 3.11: Unimodal case. Top, values of % as a function of P for several values of q. Bottom,
stability domain of the unimodal solution in the (P, g)-plane.
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05: 05:
oe: oe:
04: 04:
02: 02:

0.0 0.0

Figure 3.12: Orbits 2(4) and 3(2,2) when P = —1.5. These two orbits coalesce when P =
—1.79047. The difference in the Maslov index between these two orbits is one.

Figure 3.13: Orbits 3(2,1), 2(1), 3(1,2) when P = —1.5. 3(2,1) and 3(1, 2) bifurcates from 2(1)
at P = 1.83817.
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Maslov index=N+/-1

-

Increasing P

Figure 3.14: The bifurcation diagram near a coalescence. At the coalescence, the Maslov index
jumps by one.

e Pitchfork bifurcation (corresponding to figure 3.15):
When P < P..;, there is one symmetric orbit.
When P = P..;;, there is one symmetric non-transverse orbit.

When P > P..;, there are one symmetric orbit and two asymmetric orbits. The two
asymmetric orbits are image of one another by a reflection (e.g if ¢! is one of the asymmetric
orbits, the other is ¢" (z) = Ro'(—x)).

Several immediate remarks can be made:

e The Maslov index can jump by at most one. Otherwise, the intersection of the stable space
and of the unstable space would be strictly greater than 2 for the orbit corresponding to
jump.

o If ¢!(x) = R¢"(—x), then ¢! and ¢" have the same Maslov index.

We observed that:

e The Maslov index of the homoclinic orbit jumps by one when changing of branch in the
coalescence case.

e Let us now study the pitchfork bifurcation case:
Let P < Porit < Ps.
Let ¢*¥™! be the symmetric orbit when P = P;.

Let ¢®¥™?2 be the symmetric orbit when P = P, and let ¢! and ¢” be the two asymmetric
orbits when P = Ps.

Then the Maslov index has the following behaviour:
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Figure 3.15: The bifurcation diagram near a pitchfork bifurcation and the Maslov index

Ihom(oa ¢sym,l) = Ihom(07 ¢l) = Ihom(07 ¢T)a

and

Thom (0, 6*Y™ ) — Thom (0, *Y™2)] = 1.

That means that a bifurcation point may be the place of an exchange of stability. Besides,
taking into account formula (3.5.17), the Maslov index can be useful to determine which orbits
connect each other.

3.6 Direct study of the spectrum of L = 0,.Z

In this section, we use the algorithm presented by BRIDGES, DERKS & GOTTWALD [21] to look
at the spectrum of L.
The spectral problem Lu = Au can be put into a first-order system:

Uy = Az, \u,
0 1 0 0 0
0 0 1 0 O
~ 3.6.20
Az, \) = 0 0 0 1 0], alx)=1—(p+1)¢(x)? ( )
—a(z) 0 P 0 1
A 0 0 0 0

The essential spectrum of L is:

Oess ={A | FreR det(A(N) —ik) =0} =iR
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Therefore .55 splits C into two parts.
Then, it is possible to construct an Evans function for L on {A € C|Re(A\) > 0} like in
section 2.4.1:

Let U(z, A) and S(z, ) be solutions of U (x, \) = A® (2, \)U(z, A) and S, (2, \) = A®) (2, \)S(z, \)

with maximal decay as x goes to —oo and +oo respectively satisfying
lim, e 7 N7U(z, A) = ¢F(A) € AX(C?), (3.6.21)

and
lim, 00”7~ N28(z,A) = ¢ (N) € A¥(C), (3.6.22)

where (*()\) are eigenvectors
ASEDNCEO) = a2 (NCE). (3.6.23)

A value A € C\ 0., is called an eigenvalue if the stable and unstable solutions have nontrivial
intersection. Eigenvalues are detected by the following Evans function:

E(\)vol = S(z,\) AU(z,\) € \°(C%). (3.6.24)

where vol is the standard volume form over R®. As in section 2.4.1, we use the fact that
trace(A(x,\)) = 0. Again, the following normalization is chosen:

CrA)AC () = vol (3.6.25)
The numerical computation of the Evans function works as follow:
e Initialize U(—L, \) to (t(A) and S(—L, A) to ¢~ (A) with ¢T(A) A ¢ (A) = vol.

e Integrate U, (z,\) = (A®) (z,)) — o, (MI)U(z,\) and S, (2,)) = (A®) —a_(MID)S(z, \)
over [—L,0] and [0, L] using any standard integrator?.

e Return E(A) such that S(0,A) A U(0,\) = E()) vol.
Once the Evans function is computable, one can:

e Compute the Evans function over a4 iR. Then the number of eigenvalues with a real part
greater than « is the number of loops made by ¢ — E(a + it) around 0.

e Use the secant method to locate eigenvalues.

BUryAK & CHAMPNEYS theory predicts that two-pulse solutions with an odd index have an
unstable real eigenvalue. Now consider the n(iy,is,...,i,—1) pulse. One could conjecture that
each odd index i, should be associated to a real eigenvalue, i.e. neyen, = Nyeqr when r = 1. This
prediction is consistent with the Evans computations we performed.

However, we find for most cases that there is a pair of complex eigenvalues with a small real
part associated to each even index. Dividing by two the step and multiplying by two the length
of the interval did not shift significantly the eigenvalue. Hence, this suggests N, . % 2Nodd-

2Here, the fourth-order Runge-Kutta method was used.
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Figure 3.16: Eigenvalue of L = 0,.% in the case of the bimodal solitary wave 2(1), when
P € [—1.8,1]. The real part of this eigenvalue seems to vanish for a value of P close to —0.666.

This means that a lot of multi-pulse solutions with only odd indices might be unstable. We
also tried to track these eigenvalues when P is varied. Some of the results are presented in
figure 3.16 and 3.17.

According to the estimates of CHUGUNOVA & PELINOVSKY [42], when P is close to 2, these
eigenvalues should tend to 0, their real part tending to zero much faster than their imaginary
part. While we were not able to confirm this prediction for the solitary wave 2(1) (it would be
needed to go further than P = 1 to observe this convergence), this seems to be confirmed for
2(3). The difference in the speed of convergence may be due to:

e the fact that the real part of the eigenvalue of 2(1) is already small,

e the fact that the two pulses of 2(1) remain close to each other much longer that the two
pulses of 2(3).

An intriguing phenomenon is that in the case of the solitary wave 2(1), there is a value of P
(i.e. P~ —0.666) for which the real part of the complex eigenvalue seems to vanish (the smallest
real part observed was 10~'2, which is quite close to the machine error). For this value of P, the
solitary wave would be stable. A similar pattern was also observed for other solitary waves with
a 1 in their classifying sequence.
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Figure 3.17: Eigenvalue of L = 0,.% in the case of the bimodal solitary wave 2(3), when P is in
[—1.5,0.65]. The eigenvalue tends to 0 when P — 2.

3.7 The Maslov index of periodic waves of the Kawahara

equation

In this section, we study the Maslov index of spatially-periodic waves approximating the unimodal
homoclinic orbit. The existence of such periodic orbits have been proved by VANDERBAUWHEDE
& FIEDLER [120]. Two cases emerge:

e The homoclinic orbit has non-oscillating tails, e.g. P € [2, 00].
e The homoclinic orbit has oscillating tails, e.g. P €] —2,2].

The goal of this study was to test the numerical algorithm presented in section 2.3 on a concrete
example and to try to give an intrinsic definition of the Maslov index of homoclinic orbits at
A = 0. As we shall see for the case where P €] — 2,2[, this attempt failed, since the energy of
these periodic orbits can oscillate.

Finally, we make some remarks on the stability of these periodic orbits.

3.7.1 Periodic solutions when P > 2

In this section, we study numerically the periodic solutions for P €]2, co[. They approximate the
unimodal solution, which has in this case non-oscillating tails.

In Figure 3.18 examples of periodic solutions of (3.2.8) are shown for the case of ¢ = 1 and
P = %. These solutions have been computed numerically.
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Figure 3.18: Periodic solutions of the steady Kawahara equation for ¢ =1, P = % and periods
47, 81,127, 167, 207.
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Elements A in the spectrum of & satisfy 2w = Aw with w bounded for € R and, since
& is self-adjoint as a mapping from 2(£) — L*(R), the spectrum is real®. For operators with
periodic coefficients, the discrete spectrum is empty, and the spectrum consists of a sequence of
bands [128].

When A = 0 and ¢(z) is periodic, this system is not hyperbolic because it is the linearization
about an autonomous ODE. But when A is perturbed away from zero the two Floquet multi-
pliers at +1 move, becoming either elliptic* or hyperbolic®. At other values of ), there can be
bifurcations of Floquet multipliers as well; indeed, such bifurcations can be expected due to the
band structure of the spectrum of .Z. These issues will appear in the numerics.

In the following figures, the results of our calculations of the Maslov index are shown, for
periodic solutions of (3.2.8) with periods L = 4,8, 167,207, For each of the four cases, two
figures are shown. The first figure shows the number of iterations for the algorithm of section 2.3
to converge (an iteration is an integration from x = (r—1)L to # = rL for some integer r). When
the system is hyperbolic, the Maslov index converges fast, and in the spectral bands the algorithm
generally fails to converge. However, as shown in the second plot for each case, the Maslov index
at bifurcation points is easily determined by computing in a left or right neighborhood of the
bifurcation points. The Maslov index shows its expected behavior for values of A less than =~ 1.

The fluctuations in the region A greater than ~ 1 are due to the appearance of spectral bands.
When entering a band, as A is varied, at least two Floquet multipliers (one inside the circle and
the other outside) collide on the unit circle. Then they move along the unit circle. When leaving
the band, Floquet multipliers collide again and leave the circle. When A is in a band, there are
Floquet multipliers on the unit circle and hyperbolicity is lost. Hence when A is in a band the
algorithm should not (and does not) in general converge.

The bands can be observed in the numerical results: the non-convergence can be used as an
indication of the presence of spectrum. If the number of iterations necessary for convergence
exceeded 100, it was considered an indication that the value A was in a spectrum band or close
to it. Another indication of a band, where some Floquet multipliers are on the unit circle, is the
change in the value of the Maslov index: between two real numbers where the Maslov index is
different, there is at least a band.

A lower bound for all the bands can be computed which is valid for all finite wavelengths. If A
is in a band, then there exists w and v such that Zw = Aw, Vo w(z+ L) = yw(x) and |y| = 1.
Multiply Zw — Aw by w(z) and integrate over a period:

L L L L L
/|wm|2d$+P/ |wm|2d:c—2/ |¢(m)|2|w|2dx+/ |w|2dx:)\/ lw[2 dz .
0 0 0 0 0

Now use the fact that P > 0 and |¢(z)| < ¢™?* for all z € R to obtain
A > 1— 2|¢max|2-

With |¢p™**| = 1.4 (from Figure (3.18)), we obtain a lower bound of approximately —3. This is

39(%) is the domain of the operator .# and can be taken to be the Hilbert space H*(R) in this case.

4 An eigenvalue of a symplectic matrix is said to be elliptic if it is on the unit circle. See Appendix A.

5An eigenvalue of a symplectic matrix is said to be hyperbolic if it is a real strictly positive number. See
Appendix A.
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Figure 3.19: Maslov index Ipe, (¢, ) of the 4m-periodic solution as a function of A and position of
the Floquet multipliers of the system. The classification of the Floquet multipliers is explained
in definition 26 of Appendix A.1.
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Figure 3.20: Maslov index of the 8m-periodic solution as a function of A.
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Figure 3.21: Maslov index of the 16m-periodic solution as a function of A.
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Figure 3.22: Maslov index of the 20m-periodic solution as a function of A.



tel-00426266, version 1 - 23 Oct 2009

86 CHAPTER 3. THE KAWAHARA EQUATION

R

Figure 3.23: Position of the Floquet multipliers when going from A < 0 to A > 0 when ¢ = 1 and

=13
P=3

consistent with the numerical computations which indicate that the lowest band is at approxi-
mately —1.25.

When the period of the periodic state ¢(z) tends to oo, the width of the bands contracts, and
in the limit the continuous spectrum is limited to the one band A\ € [1,00), of infinite length,
and the band near zero contracts to the point A = 0.

Consider now the case when A is near zero. In this case the system is hyperbolic on only one
side of A = 0. When A\ = 0 there are two Floquet multipliers at +1 and two hyperbolic Floquet
multipliers as shown schematically in the middle figure in Figure 3.23.

It is clear from Figure 3.19 that there is a band for A = 0~ and for A = 07 the system is
hyperbolic, as shown schematically in Figure 3.23. Our theory applies for A = 07 which gives a
Maslov index of I,er(¢) = 2. The energy of the periodic waves is plotted as a function of k£ on
figure 3.24. In this case the energy is a monotone function of wave number and the convergence
k — 0 is rapid. According to section 1.3.1, there should be a band on the left if E'(k) > 0 and
on the right if E'(k) < 0. The fact that E’(k) > 0 is consistent with the fact that the spectrum
band is on the left.

Iper—hom(¢), introduced in section 1.3.1, seems therefore to be well-defined. Its value would
be 2.

3.7.2 Periodic solutions when —2 < P < 2

Keeping g = 1 but decreasing P to P = —1, then the energy of the periodic solutions as function
of the wave number k begins to show oscillations indicative of a Shilnikov-type bifurcation as
shown in Figure 3.25. Decreasing P further to P = —1.9 shows more dramatically the Shilnikov-
type oscillations. Each point on this diagram where E’'(k) = 0 corresponds to a saddle-centre
bifurcation of Floquet multipliers. There are always two Floquet multipliers at +1 due to the fact
that (3.2.8) is autonomous. When E’(k) = 0, two additional Floquet multipliers coalesce at +1.
Therefore, for some orbits on the branch, the spectrum band extends on both sides of 0. Each one
of these saddle-centre bifurcations of the branch of periodic orbits leads to a secondary homoclinic
bifurcation [24]. So, in addition to the limiting homoclinic orbit that we are principally interested
in, there is a countable number of other orbits generated along the branch, which are homoclinic
to the branch of periodic orbits. Although there is an infinite number of bifurcations along the
branch we will see that the Maslov index of the limiting homoclinic orbit is finite.

It follows that when —2 < P < 2, L,er—pom(9) is ill-defined.

It is also possible to compute periodic approximations to multi-modal solutions. The same
phenomenon as for uni-modal solutions takes place: families of periodic orbits approaching mul-
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Figure 3.24: Energy of the 2%—periodic solutions as function of k for g =1 and P = %.

timodal solutions have an oscillating Hamiltonian with respect to the period as shown in Fig-
ures 3.25 and 3.26.

3.7.3 Remarks concerning the stability of the periodic waves

Define the unbounded operators % and Lg over L2, ([0, L]) as:

per
Lo := (9, + i%)iﬂgqﬁ (3.7.26)
Ly = (0, + 1%)% PO, + i%)% +ep—(q+1)3@) 6. (3.7.27)

%y and Ly have only point spectrum.
According to Bloch wave decomposition, we have:

specL = U spec Ly
0el0,27|

spec. . = U spec %y
00,27

If 0 ¢ spec.%p, then, according to results of [42, 41, 75] we have:

Nynst(0) + N, ,.(0) =n_(0)

imag
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Figure 3.25: Energy of the 2%-periodic solutions as function of k for ¢ =1 and P = —1.
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Figure 3.26: Enlargement of the low wavenumber region of the Energy-wavenumber plot for the

parameter values ¢ =1 and P = —1.9.
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with:
® Nyunst(0) the number of unstable modes of Ly,

e N.  (0) the number of oscillatory modes of Ly with negative energy, e.g. (u, ZLpu) <0,

imag

e n_(#) the number of strictly negative eigenvalues of .%p.

Nimag () is an even number, and except for isolated values of 0, we will have 0 ¢ spec Zj.

Assume that we are in one of the following two cases:
e the periodic orbit is not hyperbolic and there exists 6 # 0[] such that 0 € spec(.Zp).
e the periodic orbits have an odd Maslov index (1 in this case).

For each P €] — 2,2[, there exists an infinity of periodic solutions in this situation.

Then there exists 6 such that 0 ¢ spec.Zy and n_(0) is odd. Therefore, Nypns:(0) is odd and
there will be at least a real unstable eigenvalue for Ly. As a consequence, these solutions are not
spectrally stable.

That means that a lot of periodic orbits in the oscillating case are spectrally unstable.

When P €]2, +00], the periodic orbits are hyperbolic and their Maslov index is two. Hence we
have:

e n_(0) =2 and 0 ¢ spec.% if 0 £ 0[27],
e n_(0)=1.

As a consequence, we have:

V0 # 0[27]  Nunst(0) + N

imag (9) =2.

Hence, this does not give enough information to conclude on stability. However, taking into
account that the limiting homoclinic orbit is stable, these orbits are likely to be stable.

3.8 Conclusion

We found an interesting relationship (3.5.17) between the classification of multi-pulse solitary
waves and their Maslov index. The Maslov index provides valuable information on the stability
of Kawahara solitary waves: when I, (0,0) — % is even (assuming that » = 1), the solitary
wave is unstable. This is sufficient to recover the instability results in [30, 42] concerning the
two-pulse solitary waves, e.g. that the solutions 2(27) are unstable. Besides, it gives the maximal
number of unstable eigenmodes.

In the periodic case, we make the observation that a non-hyperbolic orbit and hyperbolic orbits
with an odd Maslov index cannot be stable with respect to localized perturbations. From this
observation, we are able to conclude on the instability of some periodic waves, when P €] — 2, 2].

The numerical computation of the Evans function revealed an unexpected behaviour: it seems
that all multi-pulse solitary waves are unstable, including those of type 2(2i 4 1). This new kind
of instability is however very weak, especially when P — 27, and these multi-pulse solutions

might be observed in a transitional manner.
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Chapter 4

The Maslov index of solitary
waves arising in the long
wave-short wave resonance
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Introduction

In this chapter, we study the Maslov index of solitary waves arising in a model PDE for the
long-wave short-wave resonance. It serves as a test case for the computation of the Maslov index
in 6-dimensional case. Secondly, we study an operator, which has been inspired by the long-wave
short-wave equations, with a non-monotone Maslov index. It highlights the importance of the
semi-definiteness 0\C(xz, A), which is not automatic for spectral problems which do not come

from the Hessian of a functional.
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4.1 A model PDE for long-wave short-wave resonance

In this section the Maslov index is computed numerically for a class of solitary waves which
arise in a model PDE for long-wave short-wave (LW-SW) resonance (cf. KAWAHARA ET AL. [81],
Ma [91], BENILOV & BURTSEV [12], LATIFI & LEON [86]). The LW-SW equations are a coupled
system with one equation of nonlinear Schrédinger type and the other of KdV type. A typical
form is

Ey = i(Eu+pE —VE)

(4.1.1)
pr = 0u(paa —cp+3p*>+|E]),

were p(x,t) is real valued, E(x,t) is complex valued, and ¢, v are considered to be positive real
parameters. In real coordinates, ¥ = u + iv and p = w, the above equations can be written:

Ut = —Vpyp — VW + VU
V= Ugy + UW — VU (4.1.2)
Wi = Wepe — CWy; + 6wWw, + 2uu, + 200, .

This system can be expressed as a Hamiltonian system in time.
Let:

w((u1,v1,w1), (uz,ve, ws)) = / (2(u1v2 — ugvy) + wl(az)_lwg) dz

R
b 1 1
H(Z) = / (ui + 02 + §wi —w(w? +u? +v?) + §cw2 + v(u? + ’U2)) dz,

with Z = (u, v, w).
Then the previous system is equivalent to a Hamiltonian system, with w as the symplectic
form and H as the Hamiltonian.

If we set:
0 1 0
K= —% 0 0 |,
0 0 -0,
then the system becomes
Zy =KVH(Z),
H. —2Ugp — 2uw + 2vu
VH(Z)=| H, | = — 20 — 20w + 200
Hw — Wy + cw — 3w? —u? —v?

If we look for solitary wave solutions, the Euler-Lagrange equations give:

—2Upe — 2uw+2vu = 0
—2Up — 20w 4200 = 0 (4.1.3)

—Wyy + cw — 3w? —u? —v? = constant.
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Using equation (B.2.3), one can cast this system into an Hamiltonian form, by choosing the
following set of coordinates:

u
v v
| = 27“1‘: (4.1.4)
Ouy x
ailm 2V,
e w,

where I(u, v, W, Uy, Vg, Wy) = uZ + 02 + 2w — w(w? +u? +v?) + Tew? + v(u® 4+ v?).

Solitary waves satisfy the steady equations where the signs and coefficients are modified to
ensure that they are the Euler-Lagrange equation associated with the Hamiltonian function
H(Z). Exact solutions of this problem are known [91]; for example,

u(z) = Asech(vrz), wv(z)=0 and w(z)= 2vsech?(Vvz), (4.1.5)

with constant = 0 and A% = 2v (¢ — 4v), and the existence condition ¢ — 4v > 0.

To study the Maslov index of these solutions, linearize the steady equations about the basic
solitary wave and introduce a spectral parameter: LZ = A\Z with L = DQH(Z ). Written out,
this equation is

—2Uyy — 20U — 2Uuw + 2vu = Au
—2pp — 200 — 20w + 20 = v (4.1.6)
—Wgy + cw — 60w — 2Uu — 200 =  Aw.

When v = 0 this system decouples into a second order equation for v, and a fourth order
coupled system for u, w,

— Uy — 200U — 2?10 + 21//\’[1, = \u (4.1.7)
—Wgpy + cw — 600w — 2uu = Aw.
The decoupled equation for v is then
—2Upe — 2000 + 200 = . (4.1.8)

This latter system can be analyzed completely and the result in given in section 4.1.1.
Using coordinates (4.1.4), the fourth-order system for u, w (4.1.7) can be written as a standard
Hamiltonian ODE in the form (1.3.13) with n = 2 by taking

u A —2v + 20(x) 24(x) 0 0
24 A— D
u(z, \) = v , B(z,\) = v ¢ + 6i(z) (l) 0
2, 0 0 L g
Wy 0 0 0 1

The essential spectrum for this equation is

Oess ={AER : A>2vand \>c}.
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Figure 4.1: Longwave-Shortwave problem for the following parameters ¢ = 1, v = 0.2. Top, the

Maslov index as a function of A\. Bottom: the Evans function as a function of .

Adding the condition that ¢ > 4v, the system at infinity is hyperbolic for all A € R such that

A< 2v.

The Maslov index is computed for the case ¢ = 1 and v = 0.2 and the results are shown, along
with the Evans function, in Figure 4.1 and tabulated in the table below, where A\ < Ay =0 < A3

are the three roots of the Evans function.

A

A< A\

A< A< A

Ao < A< A3

A > A3

Thom ((u,w), \) 0

-1

—2

4.1.1 The reduced 2 x 2 eigenvalue problem associated with LW-SW

equations

The two-dimensional ODE (4.1.8) that arises in the reduced problem for LW-SW resonance can

be written in the form

1
Vge + 2vsech® (V/vx) v — vo + 5)\11 =0.
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ODE:s of this type — with sech? potential — can be solved explicitly. The essential spectrum related
to this problem is the semi-infinite interval o.ss(L) = [2v, +00[. Now suppose that A < 2v. Then
the system at infinity is hyperbolic and one can explicitly construct the solutions (v*,v~) which
give the solutions for the stable and unstable subspaces

A

Ui(ac; \) = ei“ﬁx($,u + tanh(ﬁx)), n=1/1- %

The Evans function can be obtained from

D) = Jima—oe €772V (—p + tanh (/)
lim, oo e~ VPTeFiVYT(— g tanh(y/vx))

from which we obtain

1-2 -1

_/1/+1 2v
D) =—— = :
K 1—2+1

The Maslov index can be obtained from

v (25 ) - o+ 1 — tanh(\/vz)?

v(z; A) p + tanh(y/vx)
From this quotient we can get:
Oif pu>1 0if A <0
Maslov(\) = sH = '
—lifpu<1 —1ifA>0

4.1.2 Computing the Maslov index in the case n = 3.

In the case of the longwave-shortwave resonance equation, the system (4.1.6) can be reformulated
as a coupled system on R®. Define u = (u, v, w, 2u,, 2v,, w, ), and

2+ N+ 20 0 24 0 0 0

0 2+ N+ 20 2% 0 0 0

2 2% A—cd+6 0 0 0

B(z,A) = 0 0 0 1.0 0
2

0 0 0 0 10

0 0 0 0 0 1

Then (4.1.6) is in the standard form (0.0.6) on RS.

When © = 0 the system decouples into two subsystems as noted in §4.1. In this section, the
full system will be integrated on /\3(R6) for the decoupled case. This way the calculation can
be checked against the previous calculation on R*. The reduced two-dimensional system (4.1.7)
can be solved explicitly and the calculation is given in Appendix 4.1.1.

When a system decouples into two subsystems, the Evans function of the full system is the
product of two subsystems and the Maslov index of the full system is the sum of the Maslov

indexes of the two subsystems
I2D D I4D — IGD )
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Figure 4.2: Maslov index and Evans function as functions of A associated to the 6 x 6 system

(4.1.6) when ¢ =1, v =0.2 and ¢ = 1.

A A< =1 -1<A<0]0<A<=019 | A>=0.19
Lo (0, ) 0 0 -1 -1
o (1w, w), ) 0 -1 -2 _3
Ligm ((w,v,w), A) | 0 -1 3 4

The induced system B®) can be constructed using the general formula in § 2.1. An explicit

formula is given in the Appendix of [5]. In the calculations reported here, the Maslov angle and

the algorithm in §2.4.2 are used.

Numerical results are presented in Figure 4.2. The results are in complete agreement with

the product of the Evans function of the subsystems and the sum of the Maslov indices of the

subsystems.

As noted in Appendix 4.1.1 the Maslov index for the reduced system is 0 if A < 0 and —1 if
A > 0. Adding these values to the Maslov indices in Figure 4.1 agrees with the Maslov indices

in Figure 4.2. Note also that the Evans function has a double zero at A = 0 as expected.



tel-00426266, version 1 - 23 Oct 2009

4.2. A NON-MONOTONE MASLOV INDEX 97

4.2 A non-monotone Maslov index

In the case of systems coming from the second variation of a functional, the Maslov index is a
monotone function of A (Note however that x(z) and ms_ () (limy oo U(y, A),U(x, \)) are not
monotone functions of z.). However, the Maslov index can also be defined for other self-adjoint
operators. Here we show an example where the Maslov index is not a monotone function of
A. It is a slight modification of the LW-SW resonance equations. In this case the correlation
between the number of roots of the Evans function and the value of the Maslov index is no longer

apparent. Look at the eigenvalue problem

L(%) =a (%), with n(%) .= 2~ 20@u+ 2u(@)w +2vu) o (4.2.9)
w w w Wey — cw + 60(x)w + 2U(x)u
with ¢ > 4v > 0,
U(z) = Asech(v/vz) and @(z) = 2vsech? (Vv )

with A2 = 2v(c — 4v), and the requirement ¢ > 4v > 0.
The spectral problem associated to this operator can be expressed in the form (0.0.6) with

n =2,

u A —2v + 20(z) 24(x) 0 0
24 —A— 0
u(x) = v , and B(z,\) = i(z) ¢+ 6i () (1) 0
2, 0 0 L
Wy 0 0 0 1

The essential spectrum consists of
{A: —0< A< —cU <A< +0}.

The essential spectrum is unbounded from above and below, hence a Morse index cannot be
defined for L. However, we will still be able to compute a Maslov index. The key property that
leads to non-monotonicity is that the matrix 9\B(z, \) is not monotone with respect to A.

Results for the case ¢ = 1 and v = 0.21 are tabulated below and shown in Figure 4.3. In this
case there are 5 eigenvalues, but there is no longer a correlation between the Maslov index and
the number of eigenvalues in a subset of .

A —c 0 2v
D) |40 + - 4+ 0 - + - -0
Maslov(X) -4 -3 -2 -1 -2 =3

4.3 Conclusion

We computed numerically the Maslov index for 6 x 6 system and we could observe that it was
consistent with the results obtained for the two subsystems. From the Maslov index of these
solutions, one should expect that there is at most one unstable mode. To conclude on stability,



tel-00426266, version 1 - 23 Oct 2009

98 CHAPTER 4. LONGWAVE-SHORTWAVE EQUATIONS

Maslov index

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Evans function

Figure 4.3: Plot of the Maslov index for the non-monotone example (4.2.9) for the case ¢ = 1
and v = 0.21. The upper figure shows the Maslov index and the lower figure the Evans function.
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it would be necessary to study the matrix ((u;, Lu;))i<i<k,1<j<k, Where ui,...,u; is a basis of
the generalized kernel of KL.

Concerning the second system, we have exhibited an operator unbounded from both above
and below for which it was possible to compute numerically a Maslov index. This shows that
if one wants to count the eigenvalues of an operator with Maslov index, one has to be careful
about the semidefiniteness of 9\C(x, \).



100 CHAPTER 4. LONGWAVE-SHORTWAVE EQUATIONS




tel-00426266, version 1 - 23 Oct 2009

Chapter 5

Table-top solutions arising in the
forced Korteweg-de Vries model

Contents
Introduction . . . . . . . . L L L e e e e e e e e e e e e e e e 101
5.1 The forced Korteweg—de Vries (fKdV) model . ... .. ... ... 102
5.2 Hamiltonian structure of the partial differential equation . . . . . 103
5.3 Two obstacles: exact table-top solutions . ... ... ........ 103
5.4 Details about the numerical simulations . . . . . ... ... ..... 106
5.5 Conclusion . ... ... ... i e 110

Introduction

The topic of this chapter is slightly different of the rest of this thesis since it is not about solitary
waves but stationary solutions in a non-homogeneous medium. It uses a special case of the
Maslov index theory: the classical Sturm-Liouville theory.

A forcing disturbance moving steadily in a channel can generate all kinds of interesting flows.
There are two points of view to study this problem: either one considers an obstacle moving at
constant velocity U in a uniform layer of water initially at rest, or one considers an obstacle fixed
in a uniform stream of velocity U. Suppose now that a second obstacle is placed downstream of
the first. Then several flows are possible.

[56] showed that in the presence of an obstacle one can construct mathematically solutions with
a uniform level downstream but waves upstream. We call such solutions generalized hydraulic
falls. Such solutions are not physical in the sense that the radiation condition is not satisfied.
[54] computed new solutions for the flow past two obstacles of arbitrary shape. These solutions
are characterised by a train of waves ‘trapped’ between the obstacles. It was shown that the
generalised hydraulic falls describe locally the flow over one of the two obstacles when the distance
between the two obstacles is large.

101
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Here, we study the stability of one family of solutions arising past two obstacles. A weakly
nonlinear analysis is used. A forced Korteweg—de Vries equation is integrated numerically.

5.1 The forced Korteweg—de Vries (fKdV) model

The classical KdV equation can be extended to admit arbitrary forcing functions if the forcing
disturbances are limited to unidirectional motion, say

B* = B*(z* + Ut*), (5.1.1)

representing a left-going (or right-going) bathymetry when U is positive (or negative). These
forcing functions are supposed to be sufficiently smooth, localized and to vanish identically for
t* < 0. In the derivation of KdV type equations, it is also assumed that the velocity U is
close to critical so that FF —1 = O(e). The small number € is usually defined as the square of
the ratio between the undisturbed water depth H and a typical wavelength A. Then stretched
coordinates are introduced and asymptotic expansions are assumed. After a few substitutions
and integrations, one obtains the following forced KdV equation as a model for open-channel
flow past an obstruction:

1 3, 1
= Zlzzx n e — (F—=1)n _Bz, 5.1.2
e = ghawae + 7 (17)s — e + 5 (5.1.2)
where F' is the Froude number and B is the forcing term. Let us summarize the link between the

physical variables and the variables appearing in the fKdV model (x are used for the physical

quantities).
xz%, 77:%, B:Z, t:cg .
The speed ¢q is the long wave speed
co = (9H )%
and the Froude number is defined by
=Y
Co

Only supercritical flows with F' > 1 are considered here. The stability of solutions is considered.
But first exact steady solutions are constructed by considering the inverse problem where we look
for bottom shapes providing explicit solutions.

While the stability of solutions arising past single-humped obstacle like
n = Asech®az, (5.1.3)

has been studied in [32, 31], this is not the case for solutions arising past double-humped obstacle.
Here, we study a family of table-top solutions generated by a double humped obstacle.
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5.2 Hamiltonian structure of the partial differential equa-

tion

The forced Korteweg-de Vries has an Hamiltonian structure which is useful to determine stability.
It can indeed be written as:

= Ji—:ﬁ (5.2.4)
where J is the following operator:
J= (% (5.2.5)
and H a functional called the Hamiltonian:
H(7}) = % /R <%n§ + gff’ —3(F — 1)7* + 3B7 > dz. (5.2.6)

If we linearize near a stationary solution 7 equation (5.2.4), one gets:

- 0 ..
N = %577
where £ is the Hessian of the functional H:
- 5°H . 1, - -
Lij=|— (1) = = (Azz +9(M)7) — 6(F — 1)7).
on = 6

As we shall see in the sequel, the spectrum of L is related to the spectrum of 0,L, and this
relationship is sometimes sufficient to conclude on stability.

5.3 Two obstacles: exact table-top solutions

Assume now that the solitary wave at the surface of the channel is of the form (depicted on
figure 5.1):

2
N, = Atanha(z + L) — Atanha(x — L), A= g(F —1). (5.3.7)
In other words, it is the superposition of two fronts centred at x = L (rising front) and at x = —L

(falling front), where «v and L are positive parameters. We look for a corresponding double hump
at the bottom. In order to do this, we substitute (5.3.7) into (5.1.2):

1 9
Ba,1L = 3 (6(F - 1)77a,L - 5(77a,L)2 - (na,L)ww) .

Now, we are going to study the stability of these solutions. First we study the spectrum of
the Hessian of the Hamiltonian (via Sturm-Liouville theory). Then, we will deduce some cases
of stability and instability.
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A

10 20 30 40

X

Figure 5.1: Table-top solution past two obstacles when L = 20, F' = 1.2 and o = —.5.

Spectrum of the Hessian of the Hamiltonian

In this paragraph, we assume that o < 0 and L > 0 and we are interested in the eigenvalues
of the Hessian of the Hamiltonian near n = 7n,,;, when B = B, 1.

The Hamiltonian can then be written as:

1 1 3

He,(7) = 6/ (—577923 + 5773 —3(F - 1)i* + 3Ba,L77) dz
R

The Hessian of the Hamiltonian is (by taking (u,v) — [, uv as a scalar product):

R

La,11) = 5 Claz + 900101 )i~ 6(F — 1))

The spectral problem £ can be written as a first-order linear system:

Nz
6(F —1) — 9, +6X 0 )

TUw(x) = Cor (e NU(),  Ula) = (") I (? 01>
Co,n(z,\) = ( 0 -1

(5.3.8)

The essential spectrum of Lo 1, 1S Oess(La,z) = [2(F — 1), +00[ and 0 does not belong to it.

Let ny (o, L) be the number of strictly positive eigenvalues of L, r..

n4 (o, L) can jump by at most one e.g., if (ay,, Ly,) converges to (a, L), then there exists myg
such that Vm > mg |ny(a, L) — ny (apm, Liyn)| < 1. (Assume that it is not the case near (o, L).
Then 0 would be a multiple eigenvalue of L, 1, which is impossible.)
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If o and z are fixed, then 7,1 () is an increasing function of L and

Li <Ly =Vu (u,Lar,u) < (u,La,r,u).

As a consequence, n («, L) is an increasing function of L when « is fixed.
When L =0, n = 0 and therefore n (a,0) = 0. Therefore, there exists 0 < Li(a) < La(a) <
. such that ny(a, L) =i if and only if z €|L;(a), L;i+1(a)], e.g.

“+oo
ny(a,L) = Z H]Li(a)7+00[(L)'
=1

Here are some estimates of L;(«) when F'=1.2 and a = —0.3:

)
L1(—0.3) | 2.36823 |[ Lg(—0.3) | 9.32896
Lo(—0.3) | 3.65133 || L7(—0.3) | 10.7628
L3(—0.3) | 5.04097 || Lg(—0.3) | 12.1967
L4(—0.3) | 6.46378 || Lo(—0.3) | 13.6306
L5(—0.3) | 7.89555 || L1g(—0.3) | 15.0646

Let us now give an estimate of L;11(a) — L;(«).
Let (o1, be a solution of system (5.3.8) when A = 0 such that lim,_,_ o (o,r(2) = 0. ny(a, L)
is equal to twice the number of rotations of (,, 1 around zero. If we set 7y ,00 = %(F — 1), then

Cooo(A) = (6(F 701) 64 _01>, which is approximately the value of C, r(z, ) when z is

close to 0. When A\ = 0, the period of the associated system is JorD) (0 is then in the essential

spectrum). Therefore, when 2L increases by T, the flat zone on which Cq 1(z,A) ~ Cq,00(A)

also increases by T'. ny(«, L) should increase by approximately 2yvotr-b VE;(F_U. So one could expect
that Liy1(a) — Li(@) ~iseo z (if F=1.2, 5 = 1.4339, which is consistent with

2,/6(F—1)

6(F—1)
the preceding table).

Stability and instability of some table-top solutions.
Assume that 0 ¢ (L, 1), then according to [41], we have the following relationship! between
the eigenmodes of L, 1, and those of 0, L, 1:

7’L+(O¢,L) = Nunst + N+

imag

where Nyys: is the number of unstable modes of 9, L, 1 and N;na g I8 the number of oscillatory
modes u of 0y L4, 1, such that (u, Lo pu) > 0.
If Nunst # 0, the stationary solution is unstable. Otherwise, it is said to be spectrally stable.
Using the previous paragraph, there are two cases for which it is possible to conclude on the
stability of the table-top solutions:

e L €[0,L1(a)[. Then the table-top solution is stable.

I CHUGUNOVA & PELINOVSKY [41] only mentioned the solitary wave case. Since the stationary solution is
symmetric, one can do the same proof. Contrary to the solitary wave case, the kernel of 9, L is empty, and there
is no need to take in account the generalized kernel of a,z:a,L.
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o L € Ujen]|Lait1(), Lojto(c)[. Then the table-top solution is unstable.

In the first case, the lowest eigenvalue of L, 1, is strictly positive. We have therefore Ny, s = 0.
From section 5 of CAMAssA AND WU [31], this also implies the non-linear stability of the
stationary solution.

In the second-case, n(a, L) is an odd number and there is no zero eigenvalue. Since N, is
even, Ny,s 18 odd and hence non-zero. Therefore, the solution is unstable.

If L € Ujen[Lait2(c), La;y3(a)], none of the previous arguments works. However, numerical

simulations seem to indicate that these solutions are unstable (see figure 5.4).

Numerical simulations

We tried to determine the stability of table-top solutions by integrating the fKdV system.
Except for L € [0, L1 ()], all the table-top solutions we observed were unstable, although some
instabilities were slower to appear than others. In fact, there were two kinds of leading instabil-
ities:

e Some oscillations increased alternatively in the left and in the right of the table-top. This
seems to indicate a leading pair of complex eigenvalues.

e Some oscillations grew rather uniformly on the table-top solution, which seem to indicate
a leading real eigenvalue.

We observed that the period of the oscillations appearing in the table-top could be accurately
predicted by the relation of dispersion of the system when 1 = 14,00 = %(F —1).

The relation of dispersion for 1 = 14,00 = 3(F — 1) is indeed:

k% 64
iw=ik(-——+--(F-1)—(F—-1
o = k(- + S (F = 1) = (F = 1))
or
k2
If we look for stationary oscillations, then w = 0. This implies K = 0 or k = \/6(F — 1), and the
2

period of the oscillation should be

\6(F—1)"
As a consequence, one could expect roughly Livfsf_l) oscillations developing between the
obstacles and these oscillations were indeed observed.

5.4 Details about the numerical simulations

Suppose that z takes values in the interval [-L L]. In order to work in the interval [—m 7], we
use the scaling coefficient S = 7/L. In other words

ST = Tnew, Tnew € [_77 77]

Without changing notation, the equation (5.1.2) becomes

1 3 1
= 55 we + 380 = (F = 1)Sns + 55 Bs. (5.4.9)
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Figure 5.2: Stable solution when L = 2, a = —0.3 and F = 1.2 (In that case ny(—0.3,2) = 0).
The initial condition was a perturbation of the stable solution.
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04—
03—

02"

100

800

Figure 5.3: Instability developing on the table-top solution when L = 50, « = —0.3 and F' = 1.2
(In that case ny(—0.3,50) = 34). The leading instability seems to be associated to a complex
eigenvalue, since the instability has not a uniform growth rate (the instability appears alterna-
tively on the right and the left of the table-top solution). There are 16 oscillations developing
between the two edges of the solution, which is quite close of the 17 expected oscillations.
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0.4

0.3

0.2

100

Figure 5.4: Instability developing on the table-top solution when L =52, « = —0.3 and F' = 1.2
(In that case n4(—0.3,52) = 35). Here, the leading instability seems to be associated to a real
eigenvalue, since it grows rather uniformly. There are 17 oscillations developing between the two
edges of the solution, which is quite close of the 18 expected oscillations.
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The numerical results are produced by using a Fourier spectral method. The forced KdV
equation is solved by converting it into an ordinary differential equation and then discretising
via a fourth order Runge-Kutta scheme.

5.5 Conclusion

It seems that except for low values of L, table-top solutions are unstable. The conclusion is
the same if the two obstacles have a different shape. One should not expect to observe these

solutions except in a transitional manner.
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Conclusion

The Maslov index provides a fast way to count the number of unstable modes added to the
number of neutral modes with negative energy. If its value is low enough, it can be possible to
reach a conclusion on spectral stability. Besides, its parity can be enough to prove instability. In
addition to the orientation index (see [3, 2]) and the Chern number (see [1]), the Maslov index
is another tool linking the stationary part of a PDE to its stability. Finally, it can be used to
detect bifurcation points.

However, the dimension of A\"(R?") is C%, and it grows rapidly (for example C%; = 12870)
and therefore the practical application of working on exterior algebra spaces is limited to low
dimension. For higher dimension, orthosymplectic integration becomes appealing. In orthosym-
plectic integration, continuous orthogonalization is used and the symplectic structure is retained.
For example, the algorithm proposed in [88] could be adapted to the computation of the Maslov
index. In principle, if the periodic system is hyperbolic, then random orthosymplectic initial con-
ditions can be used. However, special integrators, such as implicit Gauss-Legendre Runge-Kutta
methods, are required in order to preserve symplecticity and orthonormality to high accuracy,
and the ODE is highly nonlinear. On the other hand, orthosymplectic integrators will be essen-
tial for systems of high dimension since the dimension grows only like 2n? for linear systems of
dimension 2n.

A sketch of how orthosymplectic integration can be used is as follows. Let ®(xz, \) be a path
of symplectic matrices such that the n first columns of ®(z, \) span the unstable subspace and
J®,(x,\) = B(z, \)®(x, ). Decompose ®(t) following [88],

X1 (z,N)  Xio(z, A))

. Xaslr ) (5.5.10)

®(2,\) = Q(z, )X(z,)\), with X(z,A)(

The path of matrices Q(z,\) is symplectic and orthogonal and Xy;(z,\) is an n x n upper
triangular matrix and X9 is an n X n lower triangular matrix.
Since Q is both orthogonal and symplectic, it can be expressed in the form

Q Qi

If £ < n, the k first columns of Q span the space spanned by the first £ columns of ® and

Q(Ql _Q2>, with Qi +1Qs unitary.

therefore when k£ = n the columns of Q span the unstable space. Define k by el#(#:d) =

2

det(Qi (z,)\)—iQa(z,\))

~(0,N)—rK(L,\)
det(Q1(z,\)+iQa2(z,N))” 27

then the Maslov index is again in the periodic case and

111
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limg 4 oo K@, ) —limy . — oo k(x,N)
2m
an integer, even though ®(¢) is not necessarily periodic.

in the solitary wave case. One still needs to prove that

~(T)—rk(0) .
B 1S

Concerning multi-pulse solutions, it seems that a lot of them are spectrally unstable. However
that does not mean that these solutions are not interesting. First, the instability exponent is
quite low and is even lower when the distance between the pulses is greater, and if they appear,
they can last for quite a long time, as numerical simulations have revealed. Second, collisions
are likely to produce them in a transitional manner.

It would also be interesting to extend the result on the Hessian of the Hamiltonian to the LW-
SW equations. This would produce concluding evidence on the stability of sech®-type solutions.
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Appendix A

Modes of finite-dimensional linear
Hamiltonian systems

In this appendix, we describe the eigenmodes of linear Hamiltonian systems.
Let E = R?". Suppose that there is a symplectic form:

w:(zy) —al Ty with J= (t}" _Oln> (A.0.1)

Consider the following linear system:
u = Au (A.0.2)
This system is Hamiltonian if and only if:
JA=(TA)"
The associated Hamiltonian is then H(z) = 22 (J A)z. This leads to the following definition:

Definition 22 A matriz is said to be Hamiltonian if and only if ATJ + JA =0, i.e. JA =
(TA)".

Now, consider the flow of system (A.0.2), i.e. ® : I? — GL,(R) such that:

oP
<I)(a, a) = IQn, —(tl, tg) == A(tl)q)(tl,tg) (AO-?))
oty

Then ®(t,u) is a symplectic matrix:

Definition 23 A matriz C is said to be symplectic if and only if Ve,y w(Cz,Cy) = w(z,vy),
or equivalently if and only if CTJC = J.

Definition 24 The set of symplectic matrices is a Lie group called the symplectic group. It
is denoted as Sp(2n). Its Lie algebra is the space of Hamiltonian matrices. Its dimension is
therefore n(2n + 1).
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Sp(2n) is connected and therefore any symplectic matrix is the flow of a Hamiltonian system.

Now, to understand the spectral stability of Hamiltonian systems, the eigenvalues of these
matrices are studied. To this end, the notion of Krein signature is introduced.

The theory is then applied to the particular case of orthosymplectic matrices, which will be
useful for the definition of the Maslov Index.

Then these results are transposed to Hamiltonian matrices.

Proposition 32 is of great importance, since it gives a bound on the number of eigenvalues
which are not on the imaginary axis. Hence, the local shape of the Hamiltonian is therefore
linked to the number of unstable modes.

It has been generalized in the infinite-dimensional case by SANDSTEDE & AL. [78] and then
by CHUGUNOVA & PELINOVSKY [41] for symplectic forms like the ones involved in Korteweg-de
Vries and Kawahara equations.

A.1 Eigenvalues of symplectic matrices.

Definition 25 Two spaces E and F' are said to be w-orthogonal if and only if for all x € E and
yeF, wxy)=0.

Proposition 21 If X is an eigenvalue of A, then X, %, % are also eigenvalues.
Besides dim E) = dim Ey, = dim E% =dim F1

X

Let A is an eigenvalue of A, and u an associated (generalized) eigenvector. Then:

>l

e uT 771 is a (generalized) left eigenvector of A associated to
e 4 is a (generalized) right eigenvector of A associated to .

e @771 is a (generalized) left eigenvector of A associated to

>=

This property leads to classification of the eigenvalues of symplectic matrices:
Definition 26 Let \ be an eigenvalue different from +1.
o If A =1, {) %} s said to be an elliptic pair.
o If X\ is real positive, {\, %} is said to be an hyperbolic pair.
o If X is real negative, {\, %} s said to be an inverse hyperbolic pair.
o IfNAT1|AN#1, {) %, %, A} is said to be a lozodromic quadruplet.

Let now define S = {\ € C s.t. |A\| > 1 and Im X > 0}.
For any A\ € S, let F)\ = E), +E% + B+ E1. Then:

>

Proposition 22

R2" = @F,\.

AeS

This decomposition is w-orthogonal.
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The direct sum is obvious. w-orthogonality can be proved by recurrence:
Let us prove by recurrence over k that Vk  ker(A — A\)* L, ker(A — p):
e For k= 1:
Let x € ker(A — \) and y € ker(A — p) with gA # 1 Then:
w(z,y) = w(Az, Ay) = Auw(z,y)
o If ker(A — \)¥ 1, ker(A — p), then, for x € ker(A — \)**! and y € ker(A — p):
w(z,y) = w(Ax, Ay)
w(z,y) = w((A = Az + Az, py)
w(z,y) = w((A = Nz, Ay) + Muw(x, y) Therefore: (1 — Ap)w(z,y) = 0.
That concludes the recurrence argument.

From above, we have Ey 1, ker(A —p) =0
Let us prove by recurrence over [ that VI Ey 1, ker(A — p)t:

e Proved for [ =1
e Suppose that Ey 1, ker(A — u). Let z € Ey and y € ker(A — p)!*+:
w(z,y) = w(Az, Ay)
UJ(.’L‘, y) = UJ((A - )‘):L'a (A - ,U,)y) + )\UJ(.’L‘, (A - M)y) + Mw((A - )\)ZE, y) + )\/LL«J(ZE, y)
By using the recurrence hypothesis:
w((A =Nz, (A= py) =w((A=Nz,y) = w(A=Nz,y) =0
That concludes the recurrence argument.

Therefore, £y L, E, if Ap # 1.
This way, we can prove that if A\, x € S and A # p then F) L, F),. O

Proposition 23 The dimension of F) is even.

When A # 1 and A # —1, dim F) is obviously even and det A, = 1.
Since w is preserved by A, det = A\;_; w is also preserved by A.
Therefore det A = det Ajp_, = 1.

So dim F'_4 is even. Therefore dim Fj is even too.

A.2 Krein signature

For A € Sp(2n), let Q be the following symmetric bilinear form:

RQn 2—>R o .
Q: { (2.9) l(w(ac )Ay) + Loy, Az) Its matrix is $JA + $(TA)T = 3TA+ 3(TA) L
’ 2 ’ 2 )

Proposition 24 Let A\, u € S such that A # . Then Fy and F), are Q-orthogonal.
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Let x € F)\ and y € F),. Then Az € F)\ and Ay € F,.
Q(z,y) = 3w(z, Ay) + 3w(y, Az) = 0 (by using w-orthogonality)

Definition 27 Let R be a quadratic form. The signature of R is the couple (p,q) where p is the
number of positive eigenvalues of R and q the number of negative eigenvalues of R.

Proposition 25 Let A € S such that |\| > 1 and 2m be the dimension of Fx. Then the signature
of Qi is (m,m).

Proposition 26 Let A € S such that |\ = 1,A2 # 1 and 2m be the dimension of Fx. Then
there exists v such that (2r,2(m —r)) is the signature of Q|, .

Definition 28 The Krein signature of an eigenvalue X € S such that |\ = 1, A% # 1 is defined
as the pair (ry,rY) such that (2ry,2r)) is the signature of Q|F, -

When A is a simple eigenvalue, its Krein signature is either (1,0) or (0, 1). Then, the eigenvalue
is said to have a negative or positive Krein signature.

Proposition 27 Let (o, 3) be the signature of Q|p,+p_, -
Let (a,b) be the signature of Q and a + b= 2n. Then:
a=73 jesn>1 AMEN+23 g2y 7y Ho
b= res a>1 AmFx +23 g 51 e+

A.3 Krein signature and orthosymplectic matrices

® is an orthosymplectic matrix (i.e both orthogonal and symplectic) if and only if it can be
X -

Y X

Let w1, us ..., u, be an orthonormal basis of eigenvectors of X—1Y associated to the eigenvalues

written under the form ® = such that X — 1Y is a unitary matrix.

[1s 42, - -+ 5 fin, Which are all of modulus one.

The eigenvalues of aTe 41, [y -« « 5 fhn, 15 [42, - - - » i, and the associated eigenvectors

Y X

(251 Uz Unp ur U2 Up,
a‘re . 9 . PARERE | . b Py— 9 —— PR ) [y— .
U1 U9 Uy, —1Uq —1Us9 —1Uy,

The previous family of vectors is a basis, and can be turned into an orthosymplectic basis:

Rewuy Reus Rewu, Imuq Im us Imwu,
—Imu; ) '\ —Imus )\ —=Imu, ) \Reu; /] \Reus )  ~~\Reu,)
Let k€ {1,...,n}.

Suppose A\ # £1.

w Re UL & Re UL —w Re UL Re >\k Re Uk — Im >\k Im UL
—Imuyg |’ — Imuyg N —Imuy | ' \Im M\, Reug + Re A\, Imuy,
w (

Re Re
Uk , b = Im M\ (Reul Reuy + Imul Imuy) = Tm Mg
— Imuy —Imuy
From this and the symplecticity of the previous basis, we deduce that the Krein signature of

the eigenvalue A € S will be (#{k|ur = A}, #{k|ur = \}).
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A.4 Krein signature for Hamiltonian matrices

The eigenvalues of Hamiltonian matrices can be treated in much the same way as symplectic
matrices:

Let M be an Hamiltonian matrix and: Q(z,y) = sw(z, My) + tw(y, Mx)

(Note: @ +— Q(z,x) is the Hamiltonian of the system)

Proposition 28 If \ be an eigenvalue of A, then X\, —\, —\ are also eigenvalues.
Besides dim By = dim By = dim E_\ = dim F_x

Let S={A| ReA >0 & ImA\ > 0}.
For any A\ € S, let f\ = E\ —I—E;\ + E_» +E_5\.
Then:

Proposition 29

R2" — @fk

AES

This decomposition is w-orthogonal (and also Q-orthogonal).
Proposition 30 The dimension of f\ is even.

Proposition 31 Let A € S such that ReA = 0, X # 0 and 2m be the dimension of fx. Then
there exists r such that (2r,2(m — 1)) is the signature of Q|y, .

Definition 29 The Krein signature of an eigenvalue X € S such that Re A = 0, A # 0 is defined
as the pair (ry,ry) such that (2ry ,2r)) is the signature of Q|f, -

Proposition 32 Let (o, 3) be the signature of Q\s,. Let (a,b) be the signature of Q and a+b =
2n. Then:

a =3 yesRers0 UMEN + D0\ cs Rerco TJA: +ta

b= sesRers0 UM FN + 303 s Rarmo s + 0
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Appendix B

Euler-Lagrange equations

In this appendix, we show how to transform a variational problem, (like finding a stationary

solution), into an Hamiltonian differential equation. We closely follow the standard procedure.

The interest of this part lies in the fact that this is rarely done for derivatives greater than one.

First, we determine the differential equation satisfied by the critical point as well as the La-

grange multipliers associated with the boundary conditions.

Second, we give an Hamiltonian formulation of the differential equation and a formula for the

second derivative of the action.

B.1 Differential equation version

Let C(¢,a,b) =

To find the critical point (¢, a, b) of the action S under the constraint C'(¢, a,b) = Cy = ,

¢(a)
¢'(a)

61 (a)
b
o)
#(b)

60

and S(¢,a,b) = [ L(, ¢/, ¢

119

s 0™ )dt.

o]
g

Qp
Bo
b

D
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let us compute dS and dC.
The differential of S near the point (¢, a, b) is:

n

b
dS (66, da, db) = / %&b(’“)dt + L(b)db — L(a)da
@ k=0

Integrating by parts yields:

b d* [ oL
dS(6¢, da, db) = / 0 (-1 (—a¢<k>)dt
a k=0

1 b
j n dr—* oL (B.1.1)
(k) _1\r—k+1 e
[Sow 30 pend (2L
k=0 r=k+1

a

+L(b)db — L(a)da

The differential of C' is
da
ép(a) + ¢'(a)da
¢/ (a) + ¢ (a)da

36"~ (a) + ¢ (a)da
db
5¢(b) + ¢'(b)db
3¢/ (b) + ¢ (b)db

dC (8¢, da, db) =

¢t =1 (b) + ¢ (b)db
Then, if (¢,a,b) is a critical point of S under the constraint C(¢,a,b) = Cy, there exists
A= ()\0 M s A —po g un) such that:

dS=A-dC

From this equality, one obtains the Euler-Lagrange equations:

n

d* [ oL
Z(A)k@ (W) =0 (B.1.2)

k=0

Besides, the Lagrange multipliers are equal to:

Mo =327 Mo (a) — L(a)
po = o7y pidt (b) — L(b)
)
)

i =Dy ()RR i i} () for1<i<n

dtr—F \ 9¢()
Hi = Z:}:k-ﬂ(*l

—k+1d77F L .
r—hk+ 3= ( 3e07 (b) forl1<i<n
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B.2 Hamiltonian formulation

Let:
qr = ¢
n . r—k
P =2, (1) T e (a‘iﬁ)) : (B.2.3)
H = Z?:lpi%%’ - L

If Z = (Q,P) = (q1,42,---,qn,P1,---,Pn) expressed as a function of (¢,¢',...,p%" ") is a

diffeomorphism, then:

S(Z,a,b) = /a <PE - H> dt (B.2.4)
Define the symplectic form w as: w((Q1, P1), (Q2, P2)) = P2Q1 — P1Q2. Then:
b
dS(67, 6a, 5b) — / <w (%,52) _ dH(éZ)) dt + [P6Q)" + [(P% ~“H)SE (B.25)

Suppose that Z is a critical point of S under the constraint C(¢, a,b) = Cp, then the Euler-
Lagrange equations can be written as:

dz

Yo dHz(v) = w(a,v) (B.2.6)
In (Q, P) coordinates, this can be written as:

d OH d 0H
—P=_" —Q=-—-—. B.2.7
dt 0Q’ dtQ or ( )

If we compute the second variation 62S near a critical point Z, then:
b dsz

625(621,0,0,622,0,0) = []w(9E+,622) — D*H(621,0Z2)dt (B.2.5)

+[0Q16Ps]b.
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Appendix C

Theorems linking the Maslov
index and the number of
eigenvalues

In this appendix, we give a proof of that if A and p are not eigenvalues, then I(\) — I(x) counts
the number of eigenvalues with multiplicities in [A, y].

Proofs of the link between the Maslov index and the number of eigenvalues can be found in
the case of a finite length interval in [7, 17, 60]

The existence of eigenvalues is shown by using the change of topology of the path made by the
unstable space. BOSE AND JONES [16] were the first to exhibit such an argument which relied
on the fact that x(z, \) was increasing with respect to \.

CHEN AND Hu [40] proved under some assumptions that the Morse index of an operator is
equal to the Maslov index.

However, proving the monotony of x is not an easy thing to prove and CHEN AND Hu [40] proof
is not formulated for the problems we are considering. On the contrary, verifying that 9,C(z, \)
is semi-definite is usually straightforward. For example, as mentioned in the introduction of
chapter 1, it is possible to put the spectral problem associated to the Hessian of a functional into
such a form. Furthermore, this property is true for all systems discussed in this thesis, at the
exception of the purposefully crafted example of section 4.2.

The exact count of eigenvalues requires the additional hypothesis that the Hamiltonian is
increasing with A\. To achieve this, we need perturbative arguments and the comparison principle.

C.1 The comparison principle

—

Proposition 33 For i = 1,2, let ; be a lift in A(n) of a Lagrangian plane of solutions of the
system ¢’ = J H;x with H; symmetric. Let o be a Lagrangian plane of solutions of ¥’ = JHix.
Suppose that Hy < Ha, then the set I = { t |y2(t) Na(t) # {0}} is discrete and for a < b, we

123
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have:

Ma) (711(0);72(b)) — Ma(a) (11(a),72(a)) ,
= $dim(a(a) Ny2(a)) + Y dim(a(t) Nya(t) + 5 dim(a(b) N2 (b))

t€la,b[NI
>0

This comparison theorem can be found in [7] but not the equality. While it is not difficult to
obtain it, we reproduce it here for completeness.
This proposition can be proved by taking a set of coordinates which moves with 2/ = 7 Hyz.
1
Let @ (t) be a symplectic matrix such that: @ (t) = JH;P,(t) and a(s) = Range(P1(s) <0> ).
Let now £ be a 2n x n-matrix such that: ¢ = JH>¢ and Range(§) = p o ys.

Now, let Z = <I>1_1§ and F = Range ((é) ) Then:

mp(Range(Z|(a,p)) = Maw) ((b),72(b)) — Maa) (a(a),2(a))

dim(F NRange(Z(t))) = dim(a(t) N72(t))

T (Hy — Hy)®1 Z

= J(®T)(Hy — H1)®1Z
Let t € [a, D]
If k = dim(E NRange Z(t)) > 0, let G be a k x n-matrix of rank k such that Range(Z(t)G) =

ENZ(t).

As Hy — Hy > 0, (®T)(Hy — Hy)®, > 0.
Therefore GT(Z' )T TZ(t)+ Z()T TZ'(t)G = GT(ZT(®T)(Hy — H1)®1Z)G > 0.
As a consequence, the crossing at ¢ is regular and:

sign® (Range(Z),t, E) = dim(E N Range(Z(t))) = dim(y2(t) N a(t)).

Therefore, since the crossing points are regular, they are isolated. As a consequence I =
{t|y2(t)Na(t) # {0}} is discrete. Since [a,b] is also a closed bounded set, there is only a finite
number of crossings in [a, b].

Therefore:

mp(Range(Zjjap)) = 5 dim(y2(a) Na(a)) + 3, c)q piar dim(r2(t) N a(t))
+= d1m(72(b) a(b)).

Since @, (t)a(t) and &~ ()7, (t) are constant in moving frames, M) ((t),71(t)) is constant.
Therefore:
me(Range(Z|ap)) = Map)(@(b),12(b)) — maw)(a(b),71(b))
+1ma(a)(@(a), 11(a)) = Ma(a)(@(a), 72(a))
M) (11(0);12(0)) — Ma(a) (11(a),72(a))
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C.2 The Maslov index and the number of eigenvalues

Lemma 2 Let 1 € 0, and a,b ¢ o such that [a,b] "o = {u}. Then the multiplicity of p is at
least |Ihom (¢7 b) — Ihom (¢7 a)|

Let a,b ¢ o be such that o N [a,b] = {p}.

Let = = 4 min (dist(Sae (1), A@Uso (1)) dist (Uoe (1), A(Soc (12)))):

¢ is different of zero because A(Us (1)) and A(Soo (1)) are closed sets and Uno (1) NSso (1) = {0}.
Now, let A\; € [a, u[ and Ay €]p, b] such that:

VA€ A, o] dist(Use(N),Use (1) <& and  dist(Seo(N), Soo (1)) < €. (C.2.1)

Let x¢ be such that:

VA€ A, Ao], Ve > g dist(S(z, M), Sec(N)) < €

Vo > ao dist(U(z, M), Usc(N) < & and dist(U(z, A2),Uoo (V) < €. (C22)

U : [A, \a] X [—00, +o0[— A(n) and S : [A1, A2] x| — 00, +0o0] — A(n) are continuous functions
over simply connected domains. Therefore, they can be lifted in //\—(\”/) Let ¢ and S be their
respective lifts.

By definition, we have Ijom (¢, ;) = mSw(Ai)(Z;{(—oo, M), U(400, \)) for i =1,2.

Using the previous hypotheses:

Tnom (0 Ai) = Mis (o 20y (U(—00, 1), U(wo, A i)

Tnom (@, A2) = Tnom (9, A1) = Mg (ag,xg) (U (=00, ), U(
i TS (e, (U (00, ), U0, A1)
Since me(aq,a,) (U(=00, 1), S(20; A1) = 15 (29, 00) (U( =00, 1), S (20, A2))):
Thom (@, A2) = Tnom (9, A1) = Mis(ag,x0) (S (20, A2),U(z0, A2)))
—mS(zoy)\l)(S(l‘o, )\1),U($0, )\1))) ~ ~

Except at A = p, S(wo, A) NU(x0,A) = {0} and therefore ms(,, ) (S(zo, A),U(z0, ) is con-

stant over [\, u and Ju, A2] and the jump at p is equal t0 Thom (@, A2) — Tnom (¢, A\1).

N
(~o0

Since
dim(S(zo, 1) VU0, 1) > Lty s sy r) (S, N, U0, 1)
—limy - M (. 0) (S (w0, A), U (20, A)))
we have dim(S(zo, u) NU(z0, 1)) > Thom (s A2) — Ihom (&, A1).
Therefore, 1 is an eigenvalue of multiplicity of at least [Inom (@, A2) — Tnom (&, A1)]-
Since I is constant over [a, \1] and [A2, b], we have Inom (0, A2) — Inom (D, A1) = Thom(0,b) —

Ihom (¢7 a) .

Lemma 3 Suppose that 05T A(x, \) is positive.
Let p € o and a,b ¢ o such that [a,b] "o = {u} and a < b. Then, the multiplicity of u is
Ihom (¢7 b) - Ihom (¢7 a)'

Furthermore, for xg large enough: ms (.. (U(—o0

1), Uwo, p)) = Toem(@altlen o),

Denote by r the multiplicity of the eigenvalue p. Then r = dim (U (z, u) N S(x, p1)).
As for the previous lemma, let us introduce the quantities &, A1, Ao, xg.
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We know from lemma 2 that |[Ihom (P, A1) — Thom(d, A2)| < r. It remains to prove that r <

Ihom(¢a )‘2) - Ihom(¢; )‘2)
Now, consider the slightly perturbed problem:

Uy = (A(x, \) + 0\ — pn)J)u. (C.2.3)

Since A1, Ay are not elements of the spectrum, we have limg_, o+ U (o, \j) = U(z0, \;).
For 6 small enough, we have:

mS(mg,,u)(S(an/1')325{9(1'0’)‘1')) MS(zo,u) (S(HUO,M),?;{G(%, Ai))-
Now, let consider ¢?" such that:

o UMT(~L,N) =U(-L,p)

e U%L is a Lagrangian space of solutions of u, = (A(z, \) + 0\ — )T ).
From proposition 33 we have:

o MU, p), U (z, ) > 5 if o> —Land A > p,

° ms(xyu)(l;{(ac,u),lf{evL(x,)\)) <-Life>—Land A< p.

Besides, limy, o, dist (U (20, \),U% (20, X)) = 0 and U’ (20, \) N S(xo, 1) = {0}.
Therefore, for L large enough:

MS(zg,p) (Z;{(-TOa M)a dG’L(‘rOa )\l)) = MS(xo,p) (Z/?(.To, M)a Z/?G (:COa )\l))
From this, we conclude that:

b mS(mg”u)(z;{(an:u')azj?(an)\l)) < _ga
i mS(Im#)(d(‘mOaIU/)aZ]('TOa)\Q)) > %

Therefore, we have mg(z,, ) U(z0, M), U(xo, X2)) > k.
We have Ihom(qﬁ )\ ) = mS(zO w (U(=00, Xi),U(+00, \;)) and Mg (4, ) (U(—=00, A;),
M o, (U(=00,Ai), U (0, Ai)) = 0, 50

NG

(=00, A3-4)) =

Thom (9, A2) — Inom (¢, A1) > k.

Using the previous lemma, I},om (0, A2) — Tnom (6, A1) = k.
Furthermore, sz ) (U(—00, 1), U(wo, p)) = L@l lonl022),

O

Proposition 34 Let a,b ¢ o such that [a,b] N oess = 0. The number of eigenvalues with multi-
plicity in [a,b] is at least |Tnom (@, b) — Inom (¢, a)l.

The number of eigenvalues is finite in [a, b]. Otherwise there would be an accumulation point of
eigenvalues and hence an element of the essential spectrum.
So we can find a = Ay,..., A\, = b such that {o N[\, \it1]} = {pi}-
Therefore |Iom (), An) —Inom (¢, A\1)| < 22;11 [ Thom (@ A1) —Thom (0, Ak)| < D2y multlphClty of ;.
O
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Proposition 35 Suppose that OxT A(x, \) is positive.
Let A1, Ay & o such that [A1, Xa] N 0ess = 0. The number of eigenvalues with multiplicity in
[)\1; )\2] 18 Ihom((ba )\2) - Ihom(¢a )\1)

The demonstration is the same as the previous lemma, except that inequalities can be replaced
by equalities and absolute values removed.



128 APPENDIX C. MASLOV INDEX AND EIGENVALUES




tel-00426266, version 1 - 23 Oct 2009

Appendix D

Properties of B2 on A\"(R?")

Proposition 36 The induced matriz B?) satisfies wB?) = 0, where w is defined in (2.2.5), if
and only if JB is symmetric.

Proof.
wB® =0

e Vr,y cR™ wB@(zAy)=0

SVr,y <w,(Bz)Ay+aA(By) >p2@en=0
< Vr,y w(Bz,y)+w(x,By) =0

& Vr,y (Bz)'Jy+y'J(Bz) =0

s Vr,y y(—(IB) +JIB)y =0

< (JB)! =JB

Let B be an arbitrary 4 x 4 matrix with entries b;;. Then, with respect to the standard basis
(2.2.6) on \*(R*) the induced matrix is

B® —

(D11 + b22 ba3 boy —b13 —b1a 0
b32 bi1 + b33 b34 b12 0 —b1a
bao ba3 b11 + bag 0 b12 b13 (D.0.1)
—b31 ba1 0 ba2 + b33 b3y —boy
—by1 0 ba1 bas3 bz + by ba3
L 0 —ba1 b31 —bao b3a b33 + baa |

A constructive proof is given in §2 of [4].
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Appendix E

Maslov index theory for a simple
dissipative equation

In this appendix, we consider a simple, exactly computable model which shows how the Maslov
index of homoclinic orbits works and how it can be used to determine the stability of dissipative
structures.

It is a simplified version of the class of nonlinear parabolic PDEs studied in [16].

Consider the nonlinear parabolic PDE

)

at—@—¢+¢27 reR, (E.0.1)

for the scalar-valued function ¢(z,t). There is a basic steady solitary wave solution

é(x) = 3 sech® (3z) | (E.0.2)

which satisfies $M — $+ (52 = 0. Linearizing (E.0.1) about the basic state Zs and looking for
solutions proportional to e’ leads to the spectral problem
d*¢

Lo=Xp, with L¢:=—75 -0+ 20(x)6 . (E.0.3)

The basic state (E.0.2) is said to be (spectrally) unstable if any part of the spectrum of & is
positive. The spectrum of £ can be explicitly constructed. It consists of a branch of essential

spectra and a point spectrum
0(L) = 0ess (L) U0, (L),

with 0ess (L) ={A€R : A< =1} and 0,(&) = {—2, 0, 2}. The spectrum is illustrated in
Figure E.1.
The point spectrum can be verified by constructing the Evans function. First reformulate

(E.0.3) as a first-order system. Let
oz, )
u(z,\) = ,
s (@ (2. 7)
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Figure E.1: Plot of the spectrum of .Z.

then
Ju, = C(z,\)u, ucR* NcR, (E.0.4)

with
A+1—3sech’(3z) 0

C(z,\) =
(2, ) . 1

The eigenvalues of Bo (M) are real and hyperbolic when A+ 1 > 0. In this formulation the stable
(u™) and unstable (u™) subspaces are represented by

ut(z,\) = ® h
’ 5(h £9h*) )7
where s = %x, vy =2VvA+1,
h*(s,\) = +ag + artanh(s) + astanh®(s) + az tanh®(s) ,

and 1
= 115(4*72)1137 ap = 3(%2 —3)as, az=—vas, (E.0.5)

and ag is an arbitrary nonzero real number. The Evans function is then

ao

D) = u(z,\) Aut(z, \).

Evaluating at © = 0, a straightforward calculation leads to
2a3\ >
D\ =—-2VA+1 (1—53) A(4X+3) (4N = 5).

Details of calculations of this type can be found in the Appendix of [22].

For linear Hamiltonian systems on R? Lagrangian subspaces are just one-dimensional sub-
spaces. The path of unstable subspaces u™ (z, ) is used to define the Maslov index. The natural
one-dimensional subspace to choose for the reference space is E*(Boo (X)),

E®*(Boo(N)) = span { (%y) } .

Then, assume simple intersections between E3_(\) and u™(z, A) — which can be confirmed a
posteriori for the example (E.0.4) — and assume that

lim _span(u®(z,\)) (E*(Ba (V) = {0}

Tr— 00



tel-00426266, version 1 - 23 Oct 2009

133

This latter assumption is equivalent to assuming that A is not an eigenvalue. The Maslov index
for this case is

mesB.. ()’ = Zsign (Juj,ut),
zo

with zg the points at which u*(z,\) N E¥(Bs (X)) is non-trivial.
The path of unstable subspaces is

ut(z,\) = e 2h (E.0.6)
’ 2 hf+~nt ) o

The intersection form in this case is

sign(ut, E*(Bo(N\)),70) = sign | (Juj,ut)

= sign | (-uiig +ugif)

= sign | [((uf)? — A — 1+ 12sech’s)(u])?]

m_Z())

Hence I'(u™, E®) > 0 at each intersection, and the Maslov index is just the sum of the intersec-

+

However, at a point zo where u™ intersects E3, uj = —3~yu] and so

sign(u®, E*(Bo), 79) = sign(12sech® Sz (u7)?).

tions. An intersection occurs when

2
&€ Aut =0, where &= .
-
Now
& nut = (2ud +yuf)vol .
The factor €7* is not important and so can be divided out, giving
dh™
& Anut ~ (—— +2vhT)vol.
ds
This function has 0,1,2 or 3 zeros depending on the value of A\. Each zero corresponds to an
intersection between the unstable subspace with E*(Bo())). The function €5 Au' is illustrated
in Figure E.2 for the case A = —0.8 where £* A u™ has three zeros indicating three intersections.
A summary of the Maslov index in each region is tabulated below.

A —1<A< =3 | 3 <cA<0|0<A<S | A>2

mEs(Bw(A))(u"') 3 2 1 0

We make the following observation about the connection between the Maslov index and the
number of eigenvalues as a function of A\. Let A\g be any fixed real value of A such that A\g > —1
and )\ is not an eigenvalue, then the value of the Maslov index equals the number of eigenvalues
of £ in the set A > Ag.
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10

-0.5

-1.5

)

)
2

Figure E.2: Plot of £ Au™(x, A) for the case A = —0.8.

E.0.1 The Maslov angle in A\'(R?)

Another way to count intersections between the path ut and some reference plane is to use s.

In this case the angle s (z, \) is just the angle determined by a polar representation of u™

s(ut(z, VR) = e#@N) = uf (2, ) —iug (2, 0)
| uf (z,A) + iug (z,A)

As z — +o0 )
lim e#(®A) — —2 — .

The Maslov index is then the count of the number of times that s crosses some reference angle

as x varies, such as the angle associated with the stable subspace.
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Appendix F

Technical issues concerning the
Kawahara equation

In this appendix, we prove that:

e £, introduced in (3.3.14), has at least one strictly negative eigenvalue.

e the Maslov index of Kawahara solitary waves Ipom (6, A) converges to zero when A — —oc.

F.1 The existence of at least one negative eigenvalue
Consider the linear operator
L6 = Gurrs — Pos + ala)o, (F.11)
introduced in (3.3.14) with a(z) = ¢ — (¢ 4 1)¢(z)? and ¢(x) satisfying (3.2.8). Assume
P+4+2c>0 and 0<ec¢<1l or P>0 and c¢>0. (F.1.2)

The essential spectrum for this problem is non-negative. Here it is proved that £ has at least
one negative eigenvalue in the point spectrum.
Multiply (3.2.8) by the basic state (E(x),
G2 = ¢ = P Gus + 0bruna
0§? — (P +20) oy + 200000 + bbuves
= ¢+ o) — (P +20) §¢ox — cd2y + Gbrana -

Hence integrating, using the fact that qg and its derivatives decay exponentially as x — 400, and
the hypotheses (F.1.2) yields

[e'e) —+o0

/OO P2 dr = /00 (¢ + baz)?dx + (P + 20)/ P2dx + (1 — c)/ ¢2,dx >0, (F.1.3)

— 00 — 00 — 00 — 00
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orif P> 0andc >0,

| ot [T @@ ri )@, (F.1.4)

To prove that (F.1.1) has a negative eigenvalue, we will show that the quadratic form (u, Zu)
is negative when u = ¢ where (u, Zu) := ffooo u ZLudx. Now

= ffooo(/\ix + Pg/b\i + C(EQ) dz —(¢+1) fi’ooo $q+2dx

= —q fjooo $q+2dxa

using (F.1.4) in the last line. It follows from (F.1.3) or (F.1.4) that ($,.Z¢) < 0.

F.2 Proof that lim,_._ Irom(¢, A) = 0 for the Kawahara sys-

tem

Here, we give the details of the proof that B(z,\) = J1C(x, \) for the Kawahara equation,
with C(z, \) defined in (3.2.13), satisfies Hypothesis 4. Then we can apply proposition 20 and
prove that limy_, oo Thom (6, A) = 0.

First set
1

(1=A)7F

When A is large and negative, s is a small parameter. This parameter will be used to obtain

series expansions of the eigenvectors and of the eigenvalues.
The characteristic polynomial of B, (\) is

1
0 =det[XI - By ()] = X* - PX*+ —.
S

This polynomial is a biquadratic and for s small it has four complex roots, one in each quadrant.
Let 0(s) be the eigenvalue in the right-upper quadrant. Its Taylor expansion is:

1 1 1
0(s) = —= <1 -1 iPs® — 3—2P254 ~ T8 iP?s®+ 0 (58)) :

The other eigenvalues are 0(s), —0(s),—60(s). The eigenvector associated with 0(s) is :

A Taylor expansion of this eigenvector is:

v(s) = svi +isva + O (s°) .
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with
—(1/2V2+ § V2Ps* — g V2P%s* + 555 V2P?s0) 577
1 1 ) v
vi(s) = ﬁﬂpgsg)*@ﬂf%g*g\/@ﬁg—s
1
5P
and
~(F1/2V2 4 §VEPS + 3 VAP 4 oy VAPS) 570
1 1 ) "
va(s) = *ﬁ\/ﬁpgssfe—zx\/zPQStgx/ﬁPHz

s~ - 1s2p?
(Rewv(s),Imw(s)) is a basis of the unstable space. Let Vst be the matrix whose columns are

Rew(s) and Imw(s)).
The eigenvector associated to —6(s) is:

w(s)=s

(Rew(s),Im w(s)) is a basis of the unstable space. Let U, the matrix whose columns are Re w(s)
and Imw(s)).

The matrix (Vunst|Ust) is not a symplectic matrix but V(s) = (Vunst|Vst), with Vy; =

T -1 : .
—Ust(V) st JUst) ™, is. Besides, we have:
1 —% SZP—TI2 P3s°
2s P
0 %SZ+T16 S(JPZ
— s 6
VSt - i \/55371—16 V2Ps® 7411 \/5537% V2Ps® + O(S )
S S
-1 V2s+4 VaPst— 5 V2P?s® -1 V25— VePst— 3 VaP?s®
S S

We also have V=1 = —J(TV)J since V is a symplectic matrix.
Let

S O O O
o O O O
o O O
oS O O O

We are now able to evaluate: V-1BV: V-1BV =0 (32) but also

VBV =VBVynst =0 (5°) .

o O O
S O = O

Therefore, (V~'BV)™e; = O (s?). Therefore, as R(z,\) = A(z,\) — Ao (\) = (1 —a(z))B and
as |1 —a(z)| < Cre~ 217l this proves that Hypothesis 4 of Proposition 20 is satisfied.
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Appendix G

Approximating single eigenvalues
for regular Sturm-Liouville
problems with separated
Hermitian boundary conditions

The 1D Sturm-Liouville equation arises in various fields like Quantum Mechanics or the integrable
Korteweg-de Vries equation. The natural generalization of this well-known problem is:
Find A and u : [a, b] — R?" such that:

o Fiu(a) + Fau(b) = 0 with (E3|Es) of full rank and EyJE} = EyJE}.

0 B(x)
Vr € |a,b z =
Vo €lat] u (D(z) FAC(z) 0
and D symmetric. We also suppose that B,C,D are continuous functions.

) u with B and C symmetric definite positive

This class of boundary conditions are called Hermitian. We can see that one cannot always
choose u(a) and u(b) independently. However we will only study the ‘separated’ case where u(a)
and u(b) can be chosen independently:

Find A and u : [a, b] — R?" such that:

e u(a) € U and u(b) € V, where U and V are Lagrangian planes.

0 B(x)
N4 b =
* Vo€ lab] u <D(:1:) LAC() 0
and D symmetric. We also suppose that B,C',D are continuous function.

u with B and C' symmetric definite positive

In any case, all Hermitian boundary conditions can be reduced to separated ones (see [60]).

DWYER & ZETTL [61] have described a method which enables an exact count of the eigenvalues.
However, they have to use the bisection method to locate precisely the eigenvalues.

We use an n-form approach instead.
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Let U and V be two n-forms which map the Lagrangian spaces.

Suppose that W (z, \) satisfies W, (2, A) = A(z, \)W(z, ) and W(a, \) = U.

Let E(\) = W(b,\) A V.

E is a C! function and its zeros are the eigenvalues of the Sturm-Liouville problem. The zeros
FE can be computed by using the secant method. For single zeros, the difference between the
eigenvalue and the n-th iterate is known to be below C (1'2—‘/5)*" For multiple ones, convergence

is worse, though geometric.
We try these ideas on the system presented in [61]:
0 0 0 0
0 0 0 0
0 0 0 16
=38\ =24\ 12X\ O 0 0
=24\ —18\ =8\ 0 0 0
—12x -8\ —4Xx 0 0 0

ool
= N

_3 _
2

Az, A) = and U=V =

0

0

0
Uy
us
Ug

)

Uy
Us
Ue

We performed the integration over 100 time steps and got the following results:

Exact eigenvalue | Zeros of the approximation of £
0.25 0.2500002973
2.25 2.2502709926
6.25 6.2528890688

About eight iterations were required to reach machine precision for these single eigenvalues.
We also tried to reach multiple eigenvalues but it required more iterations than the method

used in [61].

€ R?
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Appendix H

Index of definitions and notations

e T, M is defined as the tangent space of the manifold M at the point a.
e #5 is the number of elements in the set S.

e Let U and V' two subspaces of a space F and S be a bilinear form over F.
VueUwveV Suv)=0 <qp UlsgV
In that case, U and V are said to be S-orthogonal.

e U is the set of complex numbers of modulus one.
e A(n) is the set of Lagrangian planes in R?".
e S5, (R) is the set of symmetric n X n-matrices

e Let S € S,(R), r~ the number of strictly negative eigenvalues of S and r* the number of
strictly positive eigenvalues of .S.

The signature of S is defined as (r—,r™).

e Let U be a Lagrangian plane. A(U) is the set of Lagrangian planes which are not transverse
to U.

e The k-th Grassmannian of E denoted by Gj(FE) is the set of k-dimensional subspaces of
E.

e Sp(2n) is the set of symplectic matrices, e.g. 2n x 2n-matrices such that AT JA = 7.
e A is said to be an Hamiltonian matrix if and only if 74 = (jA)T.

e O(n) is the set of orthogonal matrices, e.g. real matrices A such that AA* = I,,.

e SO(n) is the set orthogonal matrices with a determinant equal to 1.

e U(n) is the set of unitary matrices, e.g. complex matrices A such that AA* = I,,.
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e Range : M; ,.(K) — {Subspaces of K¥} is the mapping that associates a matrix to the
space spanned by its columns.

X X
o X, = { (Y) € Mz, n(R) | XTY =YTX and (Y) has rank n}

U(n) — A(n)

X
X + 1Y — Range( <Y>)

(Xn)2 — GLn((C)
*Y: ((Z) , (i)) — (X — 1Y) (W —1Z2)(W +12)~1(X +iY)

e s:A(n) — U is defined by s(Range (ii)) = det((X — 1Y) (X +1iY)).

o K, ] An) = U/~ where ~ is the relation of equivalence
Range(5) * 1 Range(A) — Eigenvalues of 1(4, B) 4
defined by:
(:Cl,SCQ, s ,$n> ~ (ylvaa B yn) < Jo one-to-one (561, L2y, IEn) - (yo'(l)vyo'(Q)a B ya(n))

° //XZn/) is the universal covering of A(n).

There is a smooth diffeomorphism between A(n) and the following closed subset of R x A(n):
{(r,U) s.t. eU) = ¢ivl

e Let (o, A),(8,B) € XZn/), C € A(n), and r4 = dim(ANC), rg = dim(B N C). Let
a1, 09, ..., n_r, €]0,27[, B1, B2, ..., Bn-ry €]0,27] such that
Kco(A) = (elor ez el%—ra 1,...,1) and Ko(B) = (P, e, ... efr—rp 1 ... 1).
Define

_ p— Z;:OTB Bi _a- Z?;QTA @i

mc((a;A)a(ﬁﬂB)) o 27

1
+ 5(7"3 —7T4)

e Let W be a Lagrangian space and « : [0, 1] — A(n) be a continuous path and let  : [0, 1] —
R be a continuous function such that ¢*(#) = s(y(x)). The Maslov index of v with respect
to W is

mw () = mw ((£(0),7(0)), (k(1), v(1))).

If 4(0) = (1), m(y) = mw (y) = 2250,

e E)(A) is defined as the generalized eigenspace of A associated to A, the set of 2 such that
Jk e N* (A—NFz=0.

e E¥(A) = {x:limy__ ez =0} and E5(A) = {z : lim;_ oo "2 = 0}.
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ANE—N\NTE

Let U be a k-form. py :
r—=UAz

/\k FE denotes the k-th exterior product of the vector space E. A denotes the exterior
product.

A® A\ E — A" E is the k-th compound matrix of A. Tt is defined as the matrix such
that: A®a; AL Aay = 2?21‘11 A Aag ALy

AR AR E — AF E is the k-th exterior power of A. It is defined as the matrix such that:
AFlgy AL N ag = Aag A ... A Aay,.

[n]
X
G : \"R?" — C is the linear form over A" R?" such that G <Y> = det(X —iY) =

K g (Range( <§> )), with £ = Range( (é) ))-
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Appendix I

Computer programs

In this section, we give describe the programs we used to make numerical simulations.

I.1 Spectral method to compute the periodic orbits

Main program used to compute periodic solutions:

% differential equation: y’’’’ - P y’’ + cxy - y~(p+1l) = 0
)

% at P = -2, the 1:1 resonance occurs

% at P = +2, one has double real eigenvalues

)

% we are interested in the branch of solitary waves
% extending from P = -2 to P = infty

)

% for P = (p~2+4*p+8)/(2(p+2)), this solitary wave can be computed
% explicitly

)

% we use periodic boundary conditions

Y%eta=10;

c=1;

p=1;

%p=5;

N=2"10

h=2%pi/N;

x=(-pi:h:pi-h)’;

hP=-1

% we now vary the parameter P and etas
Pvalue=[(3:-.1:-1.9)];
etas=(100:-.01:0)"
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%compute exact solution for
P = (p~2+4xp+8)/ (2% (p+2));
s0l=((p+4)*(3xp+4) /(8% (p+2))) " (1/p)*sech((x*etas (1)) *p./sqrt (8 (p+2)))." (4/p);

s=size(etas,1);
t=size(Pvalue,?2);
u=sol;
E=zeros(size(sol,1),s);
Energy=zeros(s,t);
ErrE=zeros(s,t);
for jj=1:t,
% u=sol;
for ii=1:s,
[u,err,energy,errE]=solfourier3_KdV(N, etas(ii,1), Pvalue(1,jj), u, p,c);
if (ii==1), sol=u;end;
plot(u)
drawnow
E(:,ii)=u;
Energy(ii,jj)=energy;
ErrE(ii, jj)=errE;
ii
33
end

end

norm(ErrE, inf)
% waterfall(eta*x, Pvalue, E),

% axis([eta*min(x) eta*max(x) min(Pvalue) max(Pvalue) -1 1.5]);
The auxiliary routine solfourier3_KdV.m is:

function [u,err,energy,errEl=solfourier3_KdV(N, eta, P, u, p,c)

%It finds a periodic solution to the following ODE:

%y)))) _py)) +C*y_y"(p+1)

%

%The solver does all the inversions in the Fourier domain.

%N is the number of points used by the discretization.

Dfourier=i*[0: (N/2-1),0, (-N/2+1) :-1]’>*(1/eta);
Dfourier2=-[0:(N/2),(-N/2+1):-1]’."2x(1/eta"2);

Dfourier3=Dfourier.*Dfourier2;
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Dfourier4=[0:(N/2),(-N/2+1):-1]’."4*x(1/eta"4);
LL=(Dfourier4-P*Dfourier2+c) ;

Lf=0(x) (x.*LL); %0perator L:y->y’’’’ - P y’’ + c*y in the

Y%Fourier domain.

Lfinv=0(x) (x./LL); %Inverse of operator L in the Fourier domain.

F=0(u) [real (ifft (LE(fft(u))))-u. " (p+1)]; %Functional whose zeros
%are the solutions of the ODE.

max_it=20;
h=2%pi/N; x=(-pi:h:pi-h)’;

change=1; it=0;

while change>le-12*norm(u) & it<max_it
%This loop tries to find the zeros of the functional F.
y=F(u);

Dff=0(x) (Lf (x)-real (fft ((p+1)*(u. p) .*ifft(x))));

%Jacobian in Fourier Domain.

unew=u-real (ifft(symmlq(Dff,real (fft(y)),107(-9),N,Lfinv)));
% Newton iteration. Inversion of the Jacobian
%in the Fourier Domain using Lfinv as a preconditionner.

change = norm(unew-u, inf);
u=unew; it=it+1;

end

err=norm(ifft (Lf(fft(u)))-u. (p+1));

foD=0(x) (real (ifft (fft (x) .*Dfourier))); %1st order derivative.
foD2=0(x) (real (ifft (fft(x) .*Dfourier2))); %2nd order derivative.
foD3=0(x) (real (ifft(fft(x).*Dfourier3))); %3rd order derivative.
foD4=0(x) (real (ifft(fft(x).*Dfourierd))); %4th order derivative.

W=foD3(u) . *foD (u)

-(1/2)*foD2(u)."2 ...

-(1/2)*P*foD(u)."2 ...

+(1/2)*u."2-(1/(p+2) ) *u. " (p+2) ; %Evaluation of the energy.

147
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energy=sum (W) /N; %Evaluation of the average energy.
errE=norm(W-energy,2)/sqrt(N); %Control of the conservation of the energy.

I.2 Shooting algorithm to obtain symmetric homoclinic so-

lutions

1.2.1 The shooting method
Reversible problems

Let V be an 2n-dimensional system.
Let R be an endomorphism of V' such that ker(R + Id) is n-dimensional and R? = Id.
Let F': V — V be such that:

e RoF = FoR. (Reversibility)
e F(0) =0 and dFp has no imaginary eigenvalue. (0 is a hyperbolic equilibrium point.)

We would like to find a symmetric homoclinic solution, i.e. a solution x such that x(0) = Rx(0)
and lim;,_ z(t) =0

The shooting algorithm

Let @ : R x V' — V such that %—‘f(t,z) = F(t,®(t,x)) and ®(0,z) = .
The unstable space U and the stable space S of dFy are n-dimensional (because S@® U =V,
RU =S and RS =U).
Let T be a large enough positive number.
Let ®a¢(t,z) be an approximation of the flow ®a;(¢,2) obtained by using a numerical inte-
grator like the fourth-order Runge-Kutta method.
Then, by using Newton’s method, it is possible to find a zero x( of the differentiable function
(R—1Id)oUr, : U — ker(R).
Once xq is obtained, the homoclinic orbit is approximated by
edFo(t+T) 4.0 if t<-T
DPar(t+ T, x0)xo if —T<t<0
RPp(t+ T, x0)zg if —T<t<0
Re~dFo(t=T) g, if t>7T

1.2.2 Computer routine

The following program implements the previous algorithm in the case of the stationary part of
the Kawahara equation

Uy U2
ug o us
us N U4
m Pus —uq + u’f“

t
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The function called homoclinic finds a point u close to ze~Pak 4Fo gyuch that ®(Ndt,u) =
il

21 and u € E%(dFp). @ is computed by using the fourth-order Runge-Kutta scheme. wu is

0
found by using a Newton iteration.

O(t,u) for t € [0,4Ndt] is an approximation of a symmetric homoclinic orbit ¢(t — 4Ndt) for
t € [0,4Ndt].

function[u,dP]=homoclinic(x,back,dt,N)
global P;
A=jac([0,0,0,0]7);

[vn,vpl=eig(A);

if P<2
for i=1:4
if real(vp(i,i)>0)
vec=[real(vn(:,1)),imag(vn(:,1i))];
end;
end;

[vn,vpl=eig(A’);
for i=1:4
if real(vp(i,i)>0)
proj=[real(vn(:,1)),imag(vn(:,i))]1”;
end;
end;

else
j=1;k=1;
for i=1:4
if real(vp(i,i)>0)
vec(:,j)=vn(:,1);j=j+1;
end;
end;
%x=-x*10"(-2) ;
[vn,vpl=eig(A’);
3=1;
for i=1:4
if real(vp(i,i)>0)
proj(j,:)=vn(:,i)’;j=j+1;
end;

end;



tel-00426266, version 1 - 23 Oct 2009

150 APPENDIX I.

end;

A=proj*vec;

vec=vec/A;

B=jac(0) *vec*proj;
x=expm(-Bxback) *x;
ret=vec*proj;

X=Proj*x;
%x=rot(2.5673859-3.0137255) *x;
err=10;

while abs(err)>10~(-10)
[y,A,dP]=calcul (vec*x,vec,N);
err=[y(2,:);y(4,:)];
dP=[dP(2,1);dP(4,1)];
A=[A(2,:);A(4,:)];
x=x-A\err;dP=A\dP; ¥Newton iteration
end

u=vec*x;dP=vec*dP;

function[y,A,dP]=calcul (x,A,N)
V=5
dt=1/1000;
dP=zeros(4,1);
for i=1:N
f1=f(x);
£2=F (x+f1*%dt/2) ;
£3=f (x+£2*dt/2) ;
fa=f (x+£3*dt) ;
di=jac(x)*A;
d2=jac(x+f1*dt/2)* (A+d1*dt/2) ;
d3=jac (x+f2*dt/2)* (A+d2*dt/2) ;
d4=jac (x+£3*dt)* (A+d3*dt) ;

dP1=jac(x)*dP+dfdP(x);

dP2=jac (x+f1*dt/2)*(dP+(dt/2)*dP1)+dfdP (x+f1*dt/2) ;
dP3=jac (x+f2*dt/2)* (dP+(dt/2)*dP2)+dfdP (x+f2*dt/2) ;
dP4=jac (x+f3*dt) * (AP+dt*dP3) +dfdP (x+f3x*dt) ;

x=x+(dt/6)* (f1+2xf2+2*xf3+f4) ;
A=A+(dt/6)* (d1+2%d2+2*d3+d4) ;
dP=dP+(dt/6) * (dP1+2*dP2+2*dP3+dP4) ;
Y=

end

COMPUTER PROGRAMS
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function[y]l=f(x)

global P;

global p;

y=[x(2,1),x(3,1),x(4,1) ,P*x(3,1)-x(1,)+x(1,1) " (p+1)]1’;
end

function[yl=jac(x)

global P;

global p;

a=x(1,1)"p;

y=[[0,1,0,0];...
[0,0,1,0];...
[0,0,0,1];...
[(p+1)*a-1,0,P,01];

end

I.3 Program to compute the Maslov index of periodic waves

The following routine is the implementation of the algorithm described in section 2.3, applied to
the case of the Kawahara equation.
This routine takes the following inputs:

e h is the A parameter at which Iy, (¢, A) is evaluated.
e P is the parameter in Kawahara equation.
e T is the period of the periodic orbit.

e a is a vector containing a(z) = 1 — (¢ + 1)¢(x)P evaluated at equidistant points over one
period.

The routine returns the following outputs:

e mas is the Maslov index Ijom (&, A),

e jj the number of iterations that were necessary to reach the unstable space.

function[mas,jjl=maslov_periodic(h,P,T,a)

%This function computes the Maslov index at h for the operator
%Llu=u_xxxx - P*u_xx + a(x)*u in the periodic case.

%The vector gives the values of a on equidistant points over a period.
%The matrix used to compute A2(x,lambda) was

%([0,0,0,1];[0,0,1,P]; [-a+h,0,0,0];[0,1,0,0]].
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f=rand(6,1);

e=rand(6,1);

s=0;

33=0;

AA=mmatA2_4(P,a(1,1)-h);

while ((jj<200) & ~“iscolinear(e,f))
f=e/norm(e) ;
e=f;
eka=(e(1,1)+i*e(3,1)-i*e(4,1)-e(6,1));
kappaO=angle (eka) ;
kappa=kappaO;

n=size(a,1);
dx=T/n;
for ii=1:2:(n-1)

ah=a(ii,1)-h;
AA(4,1)=-(-ah);
AA(6,3)=-ah;
fl1=AA*xe-s*e;

ah=a(ii,1)-h;
AA(4,1)=-(-ah);
AA(6,3)=-ah;
aux=e+dx*f1;
f2=AA*aux-s*aux;

ah=a(ii,1)-h;
AA(4,1)=-(-ah);
AA(6,3)=-ah;
aux=e+dx*xf2;

f3=AA*aux-s*aux;

ah=a(mod(ii+2,n),1)-h;
AA(4,1)=-(-ah);
AA(6,3)=-ah;
aux=e+2xdx*f3;

f4=AA*aux-s*aux;
e=e+(2*dx/6) * (f1+2xf2+2%xf3+f4) ;

ekb=(e(1,1)+i*e(3,1)-i*e(4,1)-e(6,1));

COMPUTER PROGRAMS
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kappa=kappa+angle (ekb/eka) ;
eka=ekb;
end
mas=(kappa-kappa0)/(pi);
s=s+log(norm(e) /norm(£))/T;
33=33+%;
end;

function[y]=mmatA2_4(P,ah)
y=zeros(6,6) ;

y(1,2)=1;
y(1,3)=P;
Y(1’5)=_1;
y(2,6)=-1;
y(3,1)=1;
y(4,1)=-(-ah);
y(4,6)=-P;
y(5,6)=1;
y(6,3)=-ah;
y(6,4)=-1;
end

function[t]=iscolinear(x,y)

n=size(x,1);

z=x(2:n,1) .*y(1:n-1,1)-x(1:n-1,1) .*y(2:n,1);
t=(1==0) ;

if (norm(z)<10~(-14)*norm(x)*norm(y))
t=(0==0) ;

end;

end

1.4 Program to compute the Maslov index of solitary waves

The following routine is the implementation of the algorithm described in section 2.4.4, applied
to the case of the Kawahara equation.
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This routine takes the following inputs:

e h is the A\ parameter at which Ipom (4, A) is evaluated.

e P is the parameter in Kawahara equation.

e a is a line matrix containing a(z) =1 — (¢ + 1)¢(x)? evaluated every dx.
e ainf is the limit of a(x) when 2 — +o0.

e dx is the step size between each value of a(z).
The routine returns the following outputs:

e ck1,ek2 are the complex numbers (el*1, ¢#2) associated to RIZ(\)~1U,
e mas is the Maslov index Ijom (¢, A),

e ev is the Evans function.

functionl[ekl,ek2,mas,ev]=maslov_8(h,P,a,ainf,dx)

%This function computes the Maslov index in h for the operator

slu=u_xxxx - P*u_xx + a(x)*u.

%The vector gives the value of a on the interval ]-pixeta, pi*eta].

%The matrix used to compute A2(x,lambda) was

%110,0,0,1];00,0,1,P]; [-a+h,0,0,0];[0,1,0,0]].

b

%mas gives the Maslov index at h.

%ev gives the Evans funtion at h.

%ek1(i) and ek2(i) gives the K function associated to the unstable space at

hx(1).

J=[0,0,1,0;0,0,0,1;-1,0,0,0;0,-1,0,0];

skip=1;

if ((ainf-(P~2/4))>h | (ainf>h & P>0))
[vc,vn]=eig([[0,0,0,1];[0,0,1,P]; [-ainf+h,0,0,0];[0,1,0,01]1);

n=size(a,1)-1;
dx=skip*dx;
Ainf=mmatA2_4(P,ainf-h);
[vc,vn]l=eig(Ainf);

jj=1;

sigma=zeros(6,6);
sigma(6,1)=1;
sigma(5,2)=-1;
sigma(4,3)=1;
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sigma(3,4)=1;
sigma(2,5)=-1;
sigma(1,6)=1;

%  Computation of the eignevectors of the system at infinity //

for ii=1:6
if real(vn(ii,ii))<real(vn(jj,jj));
3314
end

end

d=vc(:,3j);
ji=1;

for ii=1:6
if real(vn(ii,ii))>real(vn(jj,jj));
33t
end
end
e=vc(:,3j);
e=e/(transpose(e)*(sigma*d));
s=vn(jj,jj);
AA=Ainf;
stable=d;

CCO=symbase (h,P) "~ (-1);
CC=eye(6,6)
ek1=(n/2+1:2*skip: (n-1))’*0;
ek2=(n/2:2*skip: (n-1)) ’*0;

inter1=0;

inter2=0;
f=CCxe;
Delta=sqrt (4*f(1,1)*£(6,1)+2*f(3,1)*£(4,1)-£(3,1)"2-(4,1)72);
ekla=(£(1,1)+£(6,1)+Delta)/(£(1,1)+i*£(3,1)-i*f(4,1)-£(6,1));
ek2a=(f(1,1)+£(6,1)-Delta)/(£(1,1)+i*f(3,1)-i*f(4,1)-£(6,1));
eklb=ekla;
ek2b=ek2a;
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for ii=1:2*skip: (n-1)
ep=e;
inter=transpose(e)*sigmax*stable;
ah=a(ii,1)-h;
AA(4,1)=-(-ah);
AA(6,3)=-ah;
fl1=AA*e-s*e;

ah=a(ii+skip,1)-h;
AA(4,1)=-(-ah);
AA(6,3)=-ah;
aux=e+dxxf1l;
f2=AA*aux-s*aux;

ah=a(ii+skip,1)-h;
AA(4,1)=-(-ah);
AA(6,3)=-ah;
aux=e+dx*f2;
f3=AA*aux-s*aux;

ah=a(ii+2*skip,1)-h;
AA(4,1)=-(-ah);
AA(6,3)=-ah;
aux=e+2xdx*f3;

f4=AA*aux-s*aux;
e=e+(2*dx/6) * (f1+2*xf2+2+xf3+f4) ;

r=r+1;
f=CCxe;
Delta=sqrt (4*f(1,1)*f(6,1)+2*f(3,1)*£(4,1)-£(3,1)"2-(4,1)°2);
eklb=(£f(1,1)+£(6,1)+Delta) /(£(1,1)+i*f(3,1)-i*f(4,1)-£(6,1));
ek2b=(f(1,1)+f(6,1)-Delta) /(£(1,1)+i*f(3,1)-i*f(4,1)-f(6,1));

ek1(r,1)=eklb;
ek2(r,1)=ek2b;

if (angle(ekla)*angle(eklb)<0) & (abs(angle(ekla))<1)
interl=interi+sign(angle(eklb)); %Intersections associated
%to the first angle.
end
if (angle(ek2a)*angle(ek2b)<0) & (abs(angle(ek2a))<1)
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inter2=inter2+sign(angle(ek2b)); Y%Intersections associated
%to the second angle.
end
ekla=eklb;
ek2a=ek2b;
end
mas=interl+inter2;
ev=(transpose(e)*(sigmaxd));
else
mas=NaN;
ev=NaNl;
end

function[y]=mmatA2_4(P,ah)
y=zeros(6,6);

y(1,2)=1;

y(1,3)=P;

y(1,5)=-1;

y(2,6)=-1;
y(3,1)=1;

y(4,1)=-(-ah);

y(4,6)=-P;
y(5,6)=1;
y(6,3)=-ah;
y(6,4)=-1;
end

%Computation of a basis adpated to the stable and the unstable space.
function[y]=symbase(h,P)

J=[0,0,1,0;0,0,0,1;-1,0,0,0;0,-1,0,0];

ainf=1

h=0;

AINF=[[0,0,0,1];[0,0,1,P]; [-ainf+h,0,0,0];[0,1,0,01];
[vn,vpl=eig(AINF);

U=[real(vn(:,1)),imag(vn(:,1))];

S=[real(vn(:,3)),imag(vn(:,3))];

No=(U’*J*S) "~ (-1);

157
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V=[U*No,S];
y=zeros(6,6)
r=1;s=1;
for ii=1:4
for j=ii+l:4
for k=1:4
for 1=k+1:4
y(r,s)=det (V([ii,j], [k,11))
s=s+1;
end
end
s=1;r=r+1;
end
end

end

end

)

APPENDIX I. COMPUTER PROGRAMS
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