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Part 1: introduction & state of 
the art
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Introduction

• Grammar inference problem:

• Input: set of positive and negative examples

• Output: inferred language

• Problem:

• In general, an infinity of solutions

• Two trivial solutions:

• The PTA (prefix tree acceptor) of positive examples

• The PTA's complement of negative examples
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Introduction

• Our goal:

• Model and train one RNN to infer a regular expression from positive examples

• Without negative examples

• Our use case: log parsing
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Slot / Id​ Provisioned type​ Admin state​

1​ imm-2pac-fp3​ up​

1/2​ p6-10g-sfp​ up​

2​ imm-2pac-fp3 down​

2/1​ p6-10g-sfp​ up​

===========================

Slot/ Provisioned Admin

Id Type State 

---------------------------

1 imm-2pac-fp3 up

1/2 p6-10g-sfp up

2 imm-2pac-fp3 down

2/1 p6-10g-sfp up

===========================



Challenges

• No negative examples

• Trade-off between accuracy and shortness

• Efficiency
ab

abb
aabb
bbb

bbbb
aaabbb

b

(a|aa|aaa)?(b|bb|bbb|bbbb)

ab|abb|aabb|bbb|bbbb|aaabbb|b

(a|b)*

(a+b+) | b

a*b*
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State of the art: Gold

• Gold defined a theoretical framework to regular language induction (identification in the limit)

• Gold presented an algorithm to induce an automaton from examples

• Problems:

• Without negative examples, Gold returns results that are not interesting in practice

• Works with automata, not with regular expressions
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State of the art: inducing an automaton with a RNN

• Inducing a DFA with a RNN has been explored in the 1990s

• Idea:

• Train a RNN to act as an automaton

• Use this RNN to extract an automaton

• Problems:

• Need to train a new RNN for each language we want to induce

• Unadapted to solve our problem
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State of the art: machine learning methods

• Several methods in the literature, mostly using a metaheuristic approach

• Several working directly with regular expressions

• Problems:

• Do not scale

• Usually require negative examples
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Part 2: RING
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RING overview

• Novelties

• "One to infer them all"

• No negative examples

• Controlled and automated data generation

• Uncommon in the DL field -> explainability

• Automated result evaluation

• Our model architecture uses recent DL methods
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Training samples generation

a*b+ab
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aabb
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bbb

bbbb

aaabbb

,
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• We can easily generate training samples

• Sample = regular expression and a set of positive examples



Training samples generation
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• We can easily generate training samples

• Sample = regular expression and a set of positive examples

• Advantages:

• Automated generation

• Controlled process

• Allows to test different training strategies

• Gives better insight on hyperparameters influence



Training samples generation

• We can easily generate training samples

• Sample = regular expression and a set of positive examples

• Advantages:

• Automated generation

• Controlled process

• Allows to test different training strategies

• Gives better insight on hyperparameters influence

• Training samples generation strategy:

• Generate a regular expression from examples

• Generate examples from a regular expression
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Generating random regular expressions

• Challenges

• We would like to pick a random regular expression "uniformly" but ...

• Infinite space to pick in

• Regular expression are ambiguous by design
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Generating random regular expressions

• Challenges

• We would like to pick a random regular expression "uniformly" but ...

• Infinite space to pick in

• Regular expression are ambiguous by design

• Possible approaches:

• Random DFA generation: DFA-to-RE conversions (Arden, state suppression) lead to long regular 

expressions

• Random AST generation with given size: difficult to generate without bias

• Solution:

• Generate a random string and reject it if it is not a valid regular expression

• Enable regular expressions simplifications (e.g., a** becomes a*)
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Generating positive examples from a regular expression

• Challenges

• Difficult to pick positive examples smaller than given size uniformly from a regular expression

• Due to intrinsic ambiguities in regular expressions

• Possible approaches:

• Random walk on a DFA or on an AST: biased

• Solution: Combinatorial generation of positive examples (~enumeration)
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Quality function

• Challenges

• Multiple feasible solutions

• No unique, canonical way to define what is the best regular expression

• Several criteria

• Criteria:

• A solution must recognize all examples (feasibility)

• A solution must be short (shortness)

• A solution must be specific (accuracy)
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Quality function

• Shortness:

• Number of nodes in the corresponding AST

• Accuracy:

• Density of the language represented by the RE

• Intuition: partition a language L by word length, L = {L0, L1, L2, ….}

• Each of these subsets is finite

• In real use-cases, only the first ones are interesting for us

• Density formula

• Conserves inclusion relationship

• Characterizes how big a language is
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Quality function

• Multiple criteria

• Optimize Shortness |r| and density rho(r)

• Where α and β are positive hyperparameters

26



RING model architecture

• Seq2seq: RNNs rule the field

• Input: sequence of positive examples

• Using a metacharacter to split examples

• One-hot encoding

• Output: inferred regular expression in prefix notation

• Usual set of operators: · + | * ?

• One hot encoding

<SOS> a b b $ a b $ a a b <EOS>

<SOS> ⸱ + a + b <EOS>
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RING model architecture

• Using simple RNNs: poor results

• Lack of long-term memory

• Using LSTM: better results

• Encoder/decoder architecture



Improvement 1: attention mechanism

• Allows the decoder to use all encoders 

outputs to improve the output quality



Improvement 2: beam search decoding (BSD)

• Allows to use the entire network as a function to 

guide a search algorithm



Improvement 2: beam search decoding (BSD)

• Without BSD, we fetch the best character at each step (greedy search)
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Improvement 2: beam search decoding (BSD)

• With BSD, we fetch the B best character at each step (where B is the beam width)
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Improvement 2: beam search decoding (BSD)

• With BSD, we perform a beam search over the output of the network

• Candidate sequences are weighted by the product of probabilities of each character
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Improvement 2: beam search decoding (BSD)

• Advantages:

• Significant improvement of results quality

• Possibility to include our home-made heuristic to guide the search

• Drawbacks:

• Requires B time more computations
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Final architecture (simplified): LSTM
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Final architecture (simplified): encoder
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Final architecture (simplified): decoder

…...
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Part 3: conclusion & future 
works
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Conclusion

• A new approach to the grammatical induction problem

• Pros:

• One to infer them all

• No negative examples required

• Once trained, very quick to infer a regular expression

• Insights for RNN explainability and training methods

• Limitations:

• Training takes time and energy

• Only infers "short" regular expressions (~15 characters)
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Future works

• Improving results:

• Shuffle examples at the batch level to improve results

• Use multiple decoders (prefix, infix, suffix) to improve results

• Trim the BSD tree to improve results

• Handle examples at the pattern level

• Explainability:

• Study the influence of learning strategy to offer insight on RNN inner mechanisms.
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Questions ?
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