RING:

Regular expressions INference and
Generation

TAUDOS, June 16", 2022

Maxime Ravynal (LIG/MRIM & Nokia Bell Labs)
Marc-Olivier Buob (Nokia Bell Labs)

Georges Quénot (LIG/MRIM) Can
NOKIA ‘

Agenda

1. Introduction & state of the art
2. RING

2.1 Overview

2.2 Loss function

2.3 Dataset generation

2.4 Model architecture
3. Future works & conclusion

Part 1: introduction & state of
the art

Introduction

e o ¢ .
» Grammar inference problem: ¢ *x
* Input: set of positive and negative examples ° * A * *
« Qutput: inferred language * ok
o P ®
« Problem:
* In general, an infinity of solutions
e Two trivial solutions: % Positive examples
« The PTA (prefix tree acceptor) of positive examples e Negativeexamples

« The PTA's complement of negative examples

Introduction

e o ¢ .
» Grammar inference problem: ¢ *x
* Input: set of positive and negative examples ° * A * *
« Qutput: inferred language * ok
o P ®
« Problem:
* In general, an infinity of solutions
e Two trivial solutions: % Positive examples
« The PTA (prefix tree acceptor) of positive examples e Negativeexamples

« The PTA's complement of negative examples

Introduction

e o ¢ .
» Grammar inference problem: ¢ *x
* Input: set of positive and negative examples ° LS * *
« Qutput: inferred language * ok
o P ®
« Problem:
* In general, an infinity of solutions
e Two trivial solutions: % Positive examples
« The PTA (prefix tree acceptor) of positive examples e Negativeexamples

« The PTA's complement of negative examples

Introduction

* Qur goal:
« Model and train one RNN to infer a regular expression from positive examples
« Without negative examples

« Our use case: log parsing

Slot/ Id Provisionedtype | Adminstate
Provisioned [

1 imm-2pac-fp3 up
imm-2pac-fp3 1/2 p6-10g-sfp up
p6-10g-sfp
imm-2pac-fp3 2 imm-2pac-fp3 down

p6-10g-sfp

2/1 p6-10g-sfp up

Challenges

« No negative examples

Vs

PTA | ab|abb]aabb|bbb|bbbb|aaabbb|b]
 Trade-off between accuracy and shortness)
(alaa]aaa)?(b|bb|bbb|bbbb)]
4))
i ab (a+b+) | b } [a*b+ }
 Efficiency abb |
aabb . .
s=aol bop | I (.
bbbb - /
aaabbb . 3
b 2* | (alb)*
\ / \. J

Positive examples ' ' _
Possible solutions (regular expressions)

8

Challenges

« No negative examples

Vs

PTA ablabblaabblbbblbbbblaaabbblb]x
 Trade-off between accuracy and shortness)
(a]aa]aaa)?(b|bb|bbb|bbbb) x
4 .)) N
. d
- Efficiency abb | (a+b+) | b J 2 [T v
aabb . .
s=aol bop | I (.
bbbb - / x
aaabbb . 3
b | @b |
\ / \. J

Positive examples ' ' _
Possible solutions (regular expressions)

9

State of the art: Gold

 Gold defined a theoretical framework to regular language induction (identification in the limit)
« Gold presented an algorithm to induce an automaton from examples

 Problems:
« Without negative examples, Gold returns results that are not interesting in practice
« Works with automata, not with regular expressions

10

State of the art: inducing an automaton with a RNN

* Inducing a DFA with a RNN has been explored in the 1990s

e |dea:
 Train a RNN to act as an automaton
e Use this RNN to extract an automaton

* Problems:
« Need to train a new RNN for each language we want to induce
« Unadapted to solve our problem

11

State of the art: machine learning methods

 Several methods in the literature, mostly using a metaheuristic approach
 Several working directly with regular expressions

 Problems:
* Do not scale
« Usually require negative examples

12

Part 2: RING

2.1 Overview

2.2 Loss function

2.3 Dataset generation
2.4 Model architecture

RING overview

* Novelties
« "Onetoinferthem all"
* No negative examples

« Controlled and automated data generation
« Uncommon in the DL field -> explainability

« Automated result evaluation

e Our model architecture uses recent DL methods

15

Training samples generation

« We can easily generate training samples
« Sample = regular expression and a set of positive examples

/

=

o

\

[abb][bbbb}[b}

|

>’ [a*b+]

—abb][bbb] [aaabbb]

16

Training samples generation

« We can easily generate training samples
« Sample = regular expression and a set of positive examples

« Advantages:
« Automated generation
« (Controlled process
 Allows to test different training strategies
« Gives better insight on hyperparameters influence

Training samples generation

« We can easily generate training samples
« Sample = regular expression and a set of positive examples

« Advantages:
« Automated generation
« Controlled process
 Allows to test different training strategies
« Gives better insight on hyperparameters influence

 Training samples generation strateqgy:
+Generatearegularexpresstonfrom-exarmples

« Generate examples from a regular expression

18

Generating random regular expressions

« Challenges
« We would like to pick a random regular expression "uniformly” but ...
* Infinite space to pick in
« Regular expression are ambiguous by design

19

Generating random regular expressions

« Challenges
« We would like to pick a random regular expression "uniformly” but ...
* Infinite space to pick in
« Regular expression are ambiguous by design
» Possible approaches:

« Random DFA generation: DFA-to-RE conversions (Arden, state suppression) lead to long regular
expressions

20

Generating random regular expressions

« Challenges
« We would like to pick a random regular expression "uniformly” but ...
* Infinite space to pick in
« Regular expression are ambiguous by design
» Possible approaches:

« Random DFA generation: DFA-to-RE conversions (Arden, state suppression) lead to long regular
expressions

« Random AST generation with given size: difficult to generate without bias

21

Generating random regular expressions

« Challenges
« We would like to pick a random regular expression "uniformly” but ...
* Infinite space to pick in
« Regular expression are ambiguous by design
» Possible approaches:

« Random DFA generation: DFA-to-RE conversions (Arden, state suppression) lead to long regular
expressions

« Random AST generation with given size: difficult to generate without bias

* Solution:
» Generate a random string and reject it if it is not a valid regular expression
« Enable regular expressions simplifications (e.g., a** becomes a*)

22

Generating positive examples from a regular expression

« Challenges
« Difficult to pick positive examples smaller than given size uniformly from a regular expression
« Due to intrinsic ambiguities in regular expressions

 Possible approaches:
« Random walk on a DFA or on an AST: biased
* Solution: Combinatorial generation of positive examples (~enumeration)

23

Quality function

» Challenges
« Multiple feasible solutions
« No unique, canonical way to define what is the best regular expression
 Several criteria

e Criteria:
A solution must recognize all examples (feasibility)
* A solution must be short (shortness)
A solution must be specific (accuracy)

24

Quality function

* Shortness:
« Number of nodes in the corresponding AST

* Accuracy:
« Density of the language represented by the RE
e Intuition: partition a language L by word length, L = {L,, Ly, L,
 Each of these subsets is finite
* In real use-cases, only the first ones are interesting for us

* Density formula
« Conserves inclusion relationship
 (Characterizes how big a language is

o)

25

Quality function

« Multiple criteria
« Optimize Shortness |r| and density rho(r)

Loss(r) = [r[* - p(r)”

« Where aand [are positive hyperparameters

26

RING model architecture

« Seqg2seq: RNNs rule the field

* Input. sequence of positive examples

<SOS>abbSab$saab<EOS>

« Using a metacharacter to split examples
* One-hot encoding

« Qutput: inferred regular expression in prefix notation

« Usual set of operators: - + | * 7
* One hot encoding

<SOS>-+a+b <EOS>

27

RING model architecture

 Using simple RNNs: poor results
 Lack of long-term memory

* Using LSTM:
* Encoder/decoder architecture

Improvement 1: attention mechanism

* Allows the decoder to use all encoders
outputs to improve the output quality

Encoder Qutputs

Attention
mechanism

—Hidde
Cell

Attention Attention
mechanism mechanism

Encoding Encoding

Improvement 2: beam search decoding (BSD)

« Allows to use the entire network as a function to

guide a search algorithm

Encoder Qutputs

—Hidde
Cell

Encoding

Encoding

Attention Attention Attention
mechanism mechanism mechanism

Improvement 2: beam search decoding (BSD)

« Without BSD, we fetch the best character at each step (greedy search)

¢

ramax_y, doutput 0 |

¢

Hidden'

arg mﬂ)[Output 1 |

Cell

Hidde

’.’

Cell

™

31

Improvement 2: beam search decoding (BSD)

« With BSD, we fetch the B best character at each step (where B is the beam width)

|f Output ‘ | Output | | Output |
| J)

4

i e N —

Cell >

32

Improvement 2: beam search decoding (BSD)

« With BSD, we perform a beam search over the output of the network
« (Candidate sequences are weighted by the product of probabilities of each character

(N) () () (8 lfl\
o T O kjkjkj

ELJ

<505

=3

Improvement 2: beam search decoding (BSD)

« With BSD, we perform a beam search over the output of the network
 (Candidate sequences are weighted by the product of probabilities of each character

wB0E.

Improvement 2: beam search decoding (BSD)

« With BSD, we perform a beam search over the output of the network

 (Candidate sequences are weighted by the product of probabilities of each character

|f+?\| |f+_+\| |f+_a\| (_' | |'/-:\| (+) |f'?\| [*_I | |'/*:\| f/:m\ﬁ
T ﬁ | L]
L

Improvement 2: beam search decoding (BSD)

« With BSD, we perform a beam search over the output of the network
 (Candidate sequences are weighted by the product of probabilities of each character

Improvement 2: beam search decoding (BSD)

« With BSD, we perform a beam search over the output of the network
 (Candidate sequences are weighted by the product of probabilities of each character

/\ I/’““\/’“‘\ () () () ~.|/”"‘\/”_"‘\

a ‘m Tf]

f
| I |
| J
i, ¥

_:..|
—1-[+)

-
|

»
>
»

<505

Improvement 2: beam search decoding (BSD)

« With BSD, we perform a beam search over the output of the network
 (Candidate sequences are weighted by the product of probabilities of each character

A ry A
|: - ..I \ I: (L |) I
+ [.) *
— — .

Improvement 2: beam search decoding (BSD)

« Advantages:
* Significant improvement of results quality
« Possibility to include our home-made heuristic to guide the search

* Drawbacks:
» Requires B time more computations

39

Final architecture (simplified): LSTM

40

Final architecture (simplified): encoder

‘ Encoder Outputs

A A
Concat Concat

A
Concat

41

Final architecture (simplified): decoder

Attention weights

42

Part 3: conclusion & future
works

Conclusion
« A new approach to the grammatical induction problem

* Pros:
* One to infer them all
* No negative examples required
« Once trained, very quick to infer a regular expression
* Insights for RNN explainability and training methods

* Limitations:
* Training takes time and energy
« Only infers "short" regular expressions (~15 characters)

44

Future works

* Improving results:
 Shuffle examples at the batch level to improve results
« Use multiple decoders (prefix, infix, suffix) to improve results
 Trim the BSD tree to improve results
« Handle examples at the pattern level

 Explainability:
 Study the influence of learning strategy to offer insight on RNN inner mechanisms.

45

Questions ?

46

