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Introduction

e o ¢ .
»  Grammar inference problem: ¢ *x
* Input: set of positive and negative examples ° * A * *
« Qutput: inferred language * ok
o P ®
« Problem:
* In general, an infinity of solutions
e Two trivial solutions: % Positive examples
« The PTA (prefix tree acceptor) of positive examples e Negativeexamples

« The PTA's complement of negative examples
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Introduction

* Qur goal:
« Model and train one RNN to infer a regular expression from positive examples
« Without negative examples

« Our use case: log parsing
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Challenges

« No negative examples
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State of the art: Gold

 Gold defined a theoretical framework to regular language induction (identification in the limit)
« Gold presented an algorithm to induce an automaton from examples

 Problems:
« Without negative examples, Gold returns results that are not interesting in practice
« Works with automata, not with regular expressions
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State of the art: inducing an automaton with a RNN

* Inducing a DFA with a RNN has been explored in the 1990s

e |dea:
 Train a RNN to act as an automaton
e Use this RNN to extract an automaton

* Problems:
« Need to train a new RNN for each language we want to induce
« Unadapted to solve our problem
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State of the art: machine learning methods

 Several methods in the literature, mostly using a metaheuristic approach
 Several working directly with regular expressions

 Problems:
* Do not scale
« Usually require negative examples
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RING overview

* Novelties
« "Onetoinferthem all"
* No negative examples

« Controlled and automated data generation
« Uncommon in the DL field -> explainability

« Automated result evaluation

e Our model architecture uses recent DL methods
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Training samples generation

« We can easily generate training samples
« Sample = regular expression and a set of positive examples
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Training samples generation

« We can easily generate training samples
« Sample = regular expression and a set of positive examples

« Advantages:
« Automated generation
« (Controlled process
 Allows to test different training strategies
« Gives better insight on hyperparameters influence
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« We can easily generate training samples
« Sample = regular expression and a set of positive examples

« Advantages:
« Automated generation
« Controlled process
 Allows to test different training strategies
« Gives better insight on hyperparameters influence

 Training samples generation strateqgy:
+Generatearegularexpresstonfrom-exarmples

« Generate examples from a regular expression
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Generating random regular expressions

« Challenges
« We would like to pick a random regular expression "uniformly” but ...
* Infinite space to pick in
« Regular expression are ambiguous by design
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Generating random regular expressions

« Challenges
« We would like to pick a random regular expression "uniformly” but ...
* Infinite space to pick in
« Regular expression are ambiguous by design
» Possible approaches:

« Random DFA generation: DFA-to-RE conversions (Arden, state suppression) lead to long regular
expressions

« Random AST generation with given size: difficult to generate without bias

* Solution:
» Generate a random string and reject it if it is not a valid regular expression
« Enable regular expressions simplifications (e.g., a** becomes a*)
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Generating positive examples from a regular expression

« Challenges
« Difficult to pick positive examples smaller than given size uniformly from a regular expression
« Due to intrinsic ambiguities in regular expressions

 Possible approaches:
« Random walk on a DFA or on an AST: biased
* Solution: Combinatorial generation of positive examples (~enumeration)
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Quality function

» Challenges
« Multiple feasible solutions
« No unique, canonical way to define what is the best regular expression
 Several criteria

e Criteria:
A solution must recognize all examples (feasibility)
* A solution must be short (shortness)
A solution must be specific (accuracy)
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Quality function

* Shortness:
« Number of nodes in the corresponding AST

* Accuracy:
« Density of the language represented by the RE
e Intuition: partition a language L by word length, L = {L,, Ly, L,
 Each of these subsets is finite
* In real use-cases, only the first ones are interesting for us

* Density formula
« Conserves inclusion relationship
 (Characterizes how big a language is

o)
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Quality function

« Multiple criteria
« Optimize Shortness |r| and density rho(r)

Loss(r) = [r[* - p(r)”

« Where aand [ are positive hyperparameters
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RING model architecture

« Seqg2seq: RNNs rule the field

* Input. sequence of positive examples

<SOS>abbSab$saab<EOS>

« Using a metacharacter to split examples
* One-hot encoding

« Qutput: inferred regular expression in prefix notation

« Usual set of operators: - + | * 7
* One hot encoding

<SOS>-+a+b <EOS>
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RING model architecture

 Using simple RNNs: poor results
 Lack of long-term memory

* Using LSTM:
* Encoder/decoder architecture




Improvement 1: attention mechanism

* Allows the decoder to use all encoders
outputs to improve the output quality

Encoder Qutputs

Attention
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Attention Attention
mechanism mechanism

Encoding Encoding




Improvement 2: beam search decoding (BSD)

« Allows to use the entire network as a function to

guide a search algorithm
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Improvement 2: beam search decoding (BSD)

« Without BSD, we fetch the best character at each step (greedy search)
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Improvement 2: beam search decoding (BSD)

« With BSD, we fetch the B best character at each step (where B is the beam width)
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Improvement 2: beam search decoding (BSD)

« With BSD, we perform a beam search over the output of the network
« (Candidate sequences are weighted by the product of probabilities of each character
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Improvement 2: beam search decoding (BSD)

« With BSD, we perform a beam search over the output of the network
 (Candidate sequences are weighted by the product of probabilities of each character
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Improvement 2: beam search decoding (BSD)

« Advantages:
* Significant improvement of results quality
« Possibility to include our home-made heuristic to guide the search

* Drawbacks:
» Requires B time more computations
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Final architecture (simplified): LSTM
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Final architecture (simplified): encoder

‘ Encoder Outputs

A A
Concat Concat

A
Concat
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Final architecture (simplified): decoder

Attention weights

42



Part 3: conclusion & future
works



Conclusion
« A new approach to the grammatical induction problem

* Pros:
* One to infer them all
* No negative examples required
« Once trained, very quick to infer a regular expression
* Insights for RNN explainability and training methods

* Limitations:
* Training takes time and energy
« Only infers "short" regular expressions (~15 characters)
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Future works

* Improving results:
 Shuffle examples at the batch level to improve results
« Use multiple decoders (prefix, infix, suffix) to improve results
 Trim the BSD tree to improve results
« Handle examples at the pattern level

 Explainability:
 Study the influence of learning strategy to offer insight on RNN inner mechanisms.
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Questions ?
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