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Introduction

I Memory Augmented Neural Network were originally used to
solves problem that classical RNN cannot solves (reversing,
sorting...)

I Like a computer, it uses external memory and is Turing
Complete

I It’s also capable of basic reasoning (e.g. with the babi
dataset)

I The external memory provide some valuable insight on the
decision process of the network



Different type of MANN



TARDIS

I Bengio et al [3] proposed an architecture to help with
long-term dependencies in LSTM

I The memory here serves as a buffer (and also as a shortcut)
for hidden states

I The idea is comparable to Residual Neural Network, but with
residual connections through time



Hopfield Networks

I Ramsauer et al [5] proposed a generalization of the attention

I This model allow standard (and recurrent) neural networks to
be augmented with an associative memory

I The associative recall is based on Modern Hopfield Network

I The memory is static (i.e. not interactive), learned during
training and doesn’t change during inference



Neural Turing Machine and derivative

I This model was proposed Graves et al [1] and is based on Von
Neumann model

I An extension was also proposed by Graves et al [2]

I The memory is dynamic

I We interact (reading, writing) in a differentiable manner with
the memory at each time-step



Differentiable Neural Computer



Neural Turing Machine

I Graves et al [1] proposed a MANN architecture

I The controller can now read and write in a differentiable
manner by using attention mechanism

I To do that, the controller emits a read and a write attention
vector



Content Based Addressing

I At each time-step, the controller emit a key

I The key is compared to each location in the memory
according to a similarity measure

I A softmax is applied to the similarity score to obtain the
attention vector



Reading and writing

I We can write the read vector as :

rt =
N∑
i=1

wt(i)Mt(i)

I where
∑N

i wt(i) = 1, ∀i : 0 ≤ wt(i) ≤ 1
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Reading and writing

I The writing operation is inspired by the input and forget gates
in LSTM

M̃t(i) = Mt−1(i)[1− wt(i)et ] ; erase

Mt(i) = M̃t(i) + wt(i)at ; add



Differentiable Neural Computer

I An extension to the NTM was proposed by Graves et al [2]

I The controller have now new ways to interact with the
memory

I It can now also handle full memory issues



Temporal memory linkage

I The controller can now read the memory cells sequentially in
the order they were written

I This matrix L ∈ RN×N tracks the order in which location have
been written

I Example : If the memory location 4 was written after the
location 2. Then the location 1 was written after location 4

Lt =
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Dynamic Memory Allocation

I The DMA can free unused cell

I The objective of the dynamic memory allocation is to rewrite
the memory content

I The allocation vector at indicate to what degree, each
memory location is allocable

I For example if at = [0.8, 0.4, 0.1, 0] then the first location is
more allocable

I If at = 0 then the DNC is out of allocable memory location



Reading vector

I To compute the reading vector, the controller emits a reading
mode vector πt ∈ R3 where

∑
πt(i) = 1 and 0 ≤ πt(i) ≤ 1

I the read vector is the sum of the temporal interaction mode
and the content retrieval modes

r = πt(1)bt + πt(2)ct + πt(3)ft

I where b, c, f are respectively the backward (temporal),
content and forward(temporal)



Write vector

I As seen earlier, the allocation vector at indicate to what
degree, each memory location is allocable

I The controller also emits two scalars

I A scalar gw
t ∈ [0, 1] that governs writing intensity (gw

t = 0
imply no writing)

I A scalar ga
t ∈ [0, 1] that governs the interpolation between at

and cwt

wt = gw
t [ga

t at + (1− ga
t )cwt ]



Experiments



Experiments

https://www.youtube.com/watch?v=B9U8sI7TcMY

https://www.youtube.com/watch?v=B9U8sI7TcMY


Using memory to generate explanation



Explainable MANN



Explainable inference via Memory Tracking

I La Rosa et al [4] proposed a new MANN architecture based
on DNC

I They augmented the DNC with a memory tracking module
(Also called explanation Module)



Explainable inference via Memory Tracking

I The memory module keeps track of every reading and writing
operation

I At each time-step, it stores where the information is
read/write and associate it with the input

I With all these information, the explanation module can
extract insights from memory access during the inference



Example

I We take for example the babi stories datasets

I Consider inputs : P1 = X1X2X3 and P2 = X4X5

I Where Pi is the ith sentence and Xi a word

I Suppose each Xi is stored in a cell called Ci

I If during the inference, C2 was read 5 times, C1 was read 2
times and C4 1 times, then the explanation module infer that
P1 decision weight is :

12.5× (5 + 2) = 87.5%



Experiments



Thank you
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