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Introduction

» Memory Augmented Neural Network were originally used to
solves problem that classical RNN cannot solves (reversing,
sorting...)

> Like a computer, it uses external memory and is Turing
Complete

> It's also capable of basic reasoning (e.g. with the babi
dataset)

» The external memory provide some valuable insight on the
decision process of the network



Different type of MANN



TARDIS

» Bengio et al [3] proposed an architecture to help with
long-term dependencies in LSTM

» The memory here serves as a buffer (and also as a shortcut)
for hidden states

P> The idea is comparable to Residual Neural Network, but with

residual connections through time
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Hopfield Networks

» Ramsauer et al [5] proposed a generalization of the attention

» This model allow standard (and recurrent) neural networks to
be augmented with an associative memory

» The associative recall is based on Modern Hopfield Network

» The memory is static (i.e. not interactive), learned during
training and doesn’t change during inference
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Neural Turing Machine and derivative

» This model was proposed Graves et al [1] and is based on Von
Neumann model

» An extension was also proposed by Graves et al [2]
» The memory is dynamic

» We interact (reading, writing) in a differentiable manner with
the memory at each time-step
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Differentiable Neural Computer



Neural Turing Machine

» Graves et al [1] proposed a MANN architecture

» The controller can now read and write in a differentiable
manner by using attention mechanism

» To do that, the controller emits a read and a write attention
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Content Based Addressing

> At each time-step, the controller emit a key

» The key is compared to each location in the memory
according to a similarity measure

» A softmax is applied to the similarity score to obtain the
attention vector



Reading and writing

» We can write the read vector as :
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Reading and writing

» The writing operation is inspired by the input and forget gates
in LSTM

Mt(l) = Mtfl(l)[l — wt(i)et] ; erase
M. (i) = M.(i) + we(i)a; : add



Differentiable Neural Computer

» An extension to the NTM was proposed by Graves et al [2]
» The controller have now new ways to interact with the
memory

» It can now also handle full memory issues

lllustration of the DNC architecture
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Temporal memory linkage

» The controller can now read the memory cells sequentially in
the order they were written

» This matrix L € RN*N tracks the order in which location have
been written

» Example : If the memory location 4 was written after the
location 2. Then the location 1 was written after location 4

0001
, _|0000
710000

0100



Dynamic Memory Allocation

» The DMA can free unused cell

» The objective of the dynamic memory allocation is to rewrite
the memory content

» The allocation vector a; indicate to what degree, each
memory location is allocable

» For example if a; = [0.8,0.4,0.1,0] then the first location is
more allocable

» If a; = 0 then the DNC is out of allocable memory location



Reading vector

> To compute the reading vector, the controller emits a reading
mode vector 7; € R3 where " 7¢(i) = 1 and 0 < m(i) < 1

» the read vector is the sum of the temporal interaction mode
and the content retrieval modes

r = Ft(l)bt + 7Tt(2)Ct + 7Tt(3)ft

» where b, c, f are respectively the backward (temporal),
content and forward(temporal)



Write vector

» As seen earlier, the allocation vector a; indicate to what
degree, each memory location is allocable

» The controller also emits two scalars

» A scalar g} € [0, 1] that governs writing intensity (g;¥ =0
imply no writing)

> A scalar g7 € [0, 1] that governs the interpolation between a;
and ¢

we =g [gfar + (1 - g7)c;"]



Experiments
Random Training Graph

Underground Input:
(OxfordCircus, TottenhamCtRd, Central)
(TottenhamCtRd, OxfordCircus, Central)

(BakerSt, Marylebone, Circle)
(BakerSt, Marylebone, Bakerloo)
(Bakerst, OxfordCircus, Bakerloo)

(LeicesterSq, CharingCross, Northern)
(TottenhamCtRd, LeicesterSq, Northern)
(OxfordCircus, PiccadillyCircus, Bakerloo)
(OxfordCircus, NottingHillGate, Central)
(OxfordCircus, Euston, Victoria)

-84 edges in total
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Traversal Question:
(Bondst, _, Central),
(_, _.Circle), (_, _, Circle),

(_, _.Circle), (_, _, Circle),
(_, _ Jubilee), (_, _, Jubilee),
Answer:

(Bondst, NottingHillGate, Central)
(NottingHillGate, GloucesterRd, Circle)

(Westminster, GreenPark, Jubilee)
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Shortest Path Question:
(Moorgate, PiccadillyCircus, _)

Answer:

(Moorgate, Bank, Northern)

(Bank, Holborn, Central)

(Holborn, LeicesterSq, Piccadilly)
(LeicesterSq, PiccadillyCircus, Piccadilly)



Experiments

https://www.youtube.com/watch?v=B9U8sI7TcMY


https://www.youtube.com/watch?v=B9U8sI7TcMY

Using memory to generate explanation
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Explainable MANN



Explainable inference via Memory Tracking

» La Rosa et al [4] proposed a new MANN architecture based
on DNC

» They augmented the DNC with a memory tracking module
(Also called explanation Module)
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Explainable inference via Memory Tracking

» The memory module keeps track of every reading and writing
operation

» At each time-step, it stores where the information is
read /write and associate it with the input

» With all these information, the explanation module can
extract insights from memory access during the inference



Example
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We take for example the babi stories datasets
Consider inputs : P; = X1 XuX3 and P, = Xy X5
Where P; is the ith sentence and X; a word
Suppose each X; is stored in a cell called C;

If during the inference, C, was read 5 times, C; was read 2
times and (4 1 times, then the explanation module infer that
P; decision weight is :

12.5 x (54 2) = 87.5%



Experiments

[EarlWokeup early o make some cotfes. (48.3%) He wanted to be alert for work
that day. (47.4%) (e QrOMAMORENPINHISOGHEES. (0%) They wanted o

make coffee too. (4.2%)
El. Al6Fhisroommates madecoffee (CORRECT) — E2. All of his roommates

were sick of coffee.

a0 A ey PUEHISEUSEAEH  (15.6%) She loved everyihing about
the car except for the color. (30.3%) ShEoekEeneaniohenIocalpaintshiop. (31%)
She got it painted a bright pink color. (23%)

ElSamanthalikes the'colorof hereariow? (CORRECT) - E2. Samantha thinks
her bus looks pretty now.

Tim didn’t like school very much. (23.6%) His teacher told him he had a test

on Friday. (159%) EFIEGaIEpASS WS teste Couldmor o oM IASD . (.57%)
“Tim decide to play with his kites instead of study for the fest. 150,

El. Tim was unprepared and failed the test. — E20Tifaced thetestand passed with
AFIEIEOIBE (WRONG)

Neil (0K & fey 0 & ISR OF Sicily. ($7 2% | The wind blew his hair as he
watched the waves. (01 Soon it dacked, and he stepped onto the island. (/)
It was so breathtakingly beautiful. (12.7%)

[l Nsil enjoyed Sicily (CORRECT) - E2. Sicily was the worst place neil had

ever been.
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