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Motivation

Deep Learning for language modeling tasks:

Empirical success vs. Poor Theory

Theoretical issues
Expressiveness power: Formalization of the class of
languages a given model architecture can represent,

The learning inductive bias: The class of languages a given
pair (architecture, learning algorithm) can learn,

Semantics of the distributional representation of neural
language models

Why answers are important?

More Principled design architectures/learning algorithms,

Interpretability of models,

Property Checkability of models
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Why is a general theory of RNNs hard to develop?

• Example 1: RNN Language models with ReLu activation
function:

Basic question

Interpretation: The output is the next symbol probability
given a prefix sequence,

Property: Is the model consistent? (i.e.
∑

w∈Σ∗
P(w) = 1)

Not necessarily (Chen et al. 2018 [1])

Even worse, deciding consistency is an undecidable problem,
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Why is a general theory of RNNs hard to develop?

• Example 1: LSTMs, GRUs language models

Basic question

Interpretation: The output is the next symbol probability
given a prefix sequence,

Property: Is the model consistent? (i.e.
∑

w∈Σ∗
P(w) = 1)

LSTM, GRUs language models are consistent
(Welleck et al., 2020 [2])
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RNN-LMs and Weighted Automata

Building a bridge between RNN-LMs and Weighted Automata:

Extraction and Approximation
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RNN-LMs and Weighted Automata

Problem: Approximating RNN-LMs with Finite automata

• Given a target RNN-LM R, a class of finite state automata C,
Find a finite state automaton A ∈ C with R smallest description
size that approximates well R

Motivation
Model compression,

Model checking,

Advanced decoding and pattern queries,

Adversial attacks through model stealing,
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RNN LMs and Weighted Automata: Extraction

Problem: Approximating RNN-LMs with Finite automata

• Given a target (consistent) RNN-LM R, a class of finite state
automata C,
Find a finite state automaton A ∈ C with the smallest description
size that approximates well R

Questions
Architecture-independent algorithm?

Agnostic vs. Exact case :Presence of non-linearities in RNN
state transitions (e.g. RNNs with ReLu can represent
irrational languages)

How to measure the quality of approximation?

Computational complexity issues?

Which class of weighted automata to approximate RNN-LMs?
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RNN-LMs and Weighted Automata: Extraction

Which type of weighted automata to approximate RNN-LMs
with?
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Weighted automata

Weighted Automata (WA): Algebraic Characterization

A weighted automata (WA) over an alphabet Σ is a parametrized
model {α, {Aσ}σ∈Σ, β}} where α, β ∈ Rn, Aσ ∈ R

n×n. The weight of a

string w = σ1..σ|w | ∈ Σ∗ is given by: f(w) = αT
|w |∏
i=1

Aσiβ

Figure: A graphical representation of a WFA (Balle et al. [3])
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Weighted automata

Advantages and drawbacks

Advantages:
• High expressiveness power (as compared to other classes of
weighted automata),
• Noise Robustness of Spectral approaches for extracting WA,
Drawbacks:
• Not a generative model (Important for text generation)

Proposed approach

Spectral approach (Ayache et al., 2018 [4])

Regression in state space (Okudono et al., 2020 [5])
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Probabilistic Nondeterministic Finite Automata(PFA)

Definition: Probabilistic finite automata
A probabilistic finite automaton (PFA) is a weighted automaton
where α defines a probability distribution (the initial probability
distribution), and ∀σ ∈ Σ : Aσ(i, j) represents the probability of
emitting symbol σ and transitioning to state j, when we are at state
i

Figure: A graphical representation of a PFA (Vidal et al. [6])
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Probabilistic Nondeterministic Finite Automata(PFA)

Definition: Probabilistic finite automata
A probabilistic finite automaton (PFA) is a weighted automaton
where α defines a probability distribution (the initial probability
distribution), and ∀σ ∈ Σ : Aσ(i, j) represents the probability of
emitting symbol σ and transitioning to state j, when we are at state
i

Advantages and drawbacks

Advantages:
• Suitable for text generation tasks,
• Can be learnt using spectral approaches
Drawbacks:
• Though, the ouput of a spectral algorithm is given as an
observable operator model (loss of weight interpretability)
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Deterministic PFA

Definition: Deterministic PFA
A deterministic PFA (DPFA) is a PFA such that:

There is only one initial state,

for each state q ∈ Q , for each symbol σ ∈ Σ, there is at most
one transition,

Advantages and drawbacks

Advantages:
• Transparent and readily Interpretable,
• Can be used as a generative model
Drawbacks:
• Low expressiveness power,

Proposed approach

L* variant for extracting PDFAs from RNN-LMs (Weiss et al. [7])
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RNNs and FSMs: Equivalence and quality of
approximation

The complexity of comparing RNN Language models and
Weighted Automata
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RNNs and FSMs: Equivalence and quality of
approximation

Equivalence problem between a PDFA and consistent
RNN-LMs with ReLu activation function
• Instance: A consistent RNN-LM with ReLu activation function R,
a PDFA A,
• Problem: Are they equivalent?

Theorem (Marzouk, de la Higuera, 2020)

The equivalence problem between PDFA and consistent RNN-LMs
with ReLu as an activation function is undecidable.

The proof is a reduction from the Halting Turing Machine
problem.

As a corollary, same undecidability result holds for WFA/PFAs.

The equivalence problem in a bounded support is EXP-Hard.
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RNNs and FSMs: Equivalence and quality of
approximation

• Results on equivalence are negative. What about the
approximation problem?

Approximation between a PFA and consistent RNN-LMs with
ReLu activation function
• Instance: A consistent RNN-LM with ReLu activation function, a
PFA A, c > 0,
• Problem: Does there exist a word w ∈ Σ∗ such that
|R(w) −A(w)| > c?

Theorem (Marzouk, de la Higeura, 2020)

The approximation problem between a PFA and consistent
RNN-LMs is decidable.

Reda Marzouk and Colin de la Higuera Recurrent Neural Language Models and Weighted Automata



RNNs and FSMs: Equivalence and quality of
approximation

Approximation between a PFA and consistent RNN-LMs with
ReLu activation function in bounded support
• Instance: A consistent RNN-LM with ReLu activation function, a
PFA A, c > 0, N > 0
• Problem: Does there exist a word w ∈ Σ≤N such that
|R(w) −A(w)| > c?

Theorem (Marzouk, de la Higuera, 2020)

The approximation problem in a bounded support is NP-Hard.

• Proof. Reduction from the 3-SAT problem.
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Open questions and perspectives

Weighted Automata Extraction algorithms from RNN language
models with theoretical garantees,

Generalization of weighted automata to families of non-linear
WAs with nice expressiveness and learnability properties,
Expressiveness power of RNNs trained with Backprop:

Vanishing gradient regime,
Exploding gradient regime,
With additional components (e.g. attention mechanism etc.)
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Thanks for your
attention
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