Recurrent Neural Language Models and Weighted Automata Extraction and Approximation

Reda Marzouk and Colin de la Higuera

Nantes University

April 2021

イロト イヨト イヨト イヨト

RNN-LMs and Weighted Automata: The extraction problem 2

RNNs and Weighted Automata: Equivalence and distance from 3 a computational viewpoint

Open questions and perspectives

(4月) (4日) (4日)

Deep Learning for language modeling tasks:

Empirical success vs. Poor Theory

Theoretical issues

• Expressiveness power: Formalization of the class of languages a given model architecture can *represent*,

Deep Learning for language modeling tasks:

Empirical success vs. Poor Theory

Theoretical issues

- Expressiveness power: Formalization of the class of languages a given model architecture can *represent*,
- The learning inductive bias: The class of languages a given pair (architecture, learning algorithm) can *learn*,

Deep Learning for language modeling tasks:

Empirical success vs. Poor Theory

Theoretical issues

- Expressiveness power: Formalization of the class of languages a given model architecture can represent,
- The learning inductive bias: The class of languages a given pair (architecture, learning algorithm) can *learn*,
- Semantics of the distributional representation of neural language models

Why answers are important?

More Principled design architectures/learning algorithms,

Deep Learning for language modeling tasks:

Empirical success vs. Poor Theory

Theoretical issues

- Expressiveness power: Formalization of the class of languages a given model architecture can *represent*,
- The learning inductive bias: The class of languages a given pair (architecture, learning algorithm) can *learn*,
- Semantics of the distributional representation of neural language models

Why answers are important?

- More Principled design architectures/learning algorithms,
- Interpretability of models,

Deep Learning for language modeling tasks:

Empirical success vs. Poor Theory

Theoretical issues

- Expressiveness power: Formalization of the class of languages a given model architecture can *represent*,
- The learning inductive bias: The class of languages a given pair (architecture, learning algorithm) can *learn*,
- Semantics of the distributional representation of neural language models

Why answers are important?

- More Principled design architectures/learning algorithms,
- Interpretability of models,
- Property Checkability of models

• **Example 1:** RNN Language models with ReLu activation function:

Basic question

 Interpretation: The output is the next symbol probability given a prefix sequence,

• **Example 1:** RNN Language models with ReLu activation function:

Basic question

- Interpretation: The output is the next symbol probability given a prefix sequence,
- **Property:** Is the model consistent? (i.e. $\sum_{w \in \Sigma^*} \mathbb{P}(w) = 1$) **Not necessarily** (Chen et al. 2018 [1])

・ロト ・ 日 ・ ・ 日 ・

• **Example 1:** RNN Language models with ReLu activation function:

Basic question

- Interpretation: The output is the next symbol probability given a prefix sequence,
- **Property:** Is the model consistent? (i.e. $\sum_{w \in \Sigma^*} \mathbb{P}(w) = 1$)

Not necessarily (Chen et al. 2018 [1])

• Even worse, deciding consistency is an undecidable problem,

• □ ▶ • 4 □ ▶ • Ξ ▶

• Example 1: LSTMs, GRUs language models

Basic question

- Interpretation: The output is the next symbol probability given a prefix sequence,
- **Property:** Is the model consistent? (i.e. $\sum_{w \in \Sigma^*} \mathbb{P}(w) = 1$)

LSTM, GRUs language models are consistent (Welleck et al., 2020 [2])

Building a bridge between RNN-LMs and Weighted Automata:

Extraction and Approximation

イロト イボト イヨト イヨト

Problem: Approximating RNN-LMs with Finite automata

• Given a target RNN-LM R, a class of finite state automata C, Find a finite state automaton $A \in C$ with R smallest description size that approximates well R

Motivation

- Model compression,
- Model checking,
- Advanced decoding and pattern queries,
- Adversial attacks through model stealing,

Problem: Approximating RNN-LMs with Finite automata

• Given a target (consistent) RNN-LM *R*, a class of finite state automata *C*,

Find a finite state automaton $A \in C$ with the smallest description size that approximates well R

Questions

• Architecture-independent algorithm?

Problem: Approximating RNN-LMs with Finite automata

• Given a target (consistent) RNN-LM *R*, a class of finite state automata *C*,

Find a finite state automaton $A \in C$ with the smallest description size that approximates well R

Questions

- Architecture-independent algorithm?
- Agnostic vs. Exact case :Presence of non-linearities in RNN state transitions (e.g. RNNs with ReLu can represent irrational languages)

Problem: Approximating RNN-LMs with Finite automata

• Given a target (consistent) RNN-LM *R*, a class of finite state automata *C*,

Find a finite state automaton $A \in C$ with the smallest description size that approximates well R

Questions

- Architecture-independent algorithm?
- Agnostic vs. Exact case :Presence of non-linearities in RNN state transitions (e.g. RNNs with ReLu can represent irrational languages)
- How to measure the quality of approximation?

Problem: Approximating RNN-LMs with Finite automata

• Given a target (consistent) RNN-LM *R*, a class of finite state automata *C*,

Find a finite state automaton $A \in C$ with the smallest description size that approximates well R

Questions

- Architecture-independent algorithm?
- Agnostic vs. Exact case :Presence of non-linearities in RNN state transitions (e.g. RNNs with ReLu can represent irrational languages)
- How to measure the quality of approximation?
- Computational complexity issues?

Problem: Approximating RNN-LMs with Finite automata

• Given a target (consistent) RNN-LM *R*, a class of finite state automata *C*,

Find a finite state automaton $A \in C$ with the smallest description size that approximates well R

Questions

- Architecture-independent algorithm?
- Agnostic vs. Exact case :Presence of non-linearities in RNN state transitions (e.g. RNNs with ReLu can represent irrational languages)
- How to measure the quality of approximation?
- Computational complexity issues?
- Which class of weighted automata to approximate RNN-LMs?

Which type of weighted automata to approximate RNN-LMs with?

ヘロト ヘヨト ヘヨト ヘヨト

Weighted Automata (WA): Algebraic Characterization

A weighted automata (WA) over an alphabet Σ is a parametrized model { α , { A_{σ} } $_{\sigma \in \Sigma}$, β } where $\alpha, \beta \in \mathbb{R}^{n}$, $A_{\sigma} \in \mathbb{R}^{n \times n}$. The weight of a string $w = \sigma_1 ... \sigma_{|w|} \in \Sigma^*$ is given by: $f(w) = \alpha^T \prod_{i=1}^{|w|} A_{\sigma_i}\beta$

Figure: A graphical representation of a WFA (Balle et al. [3])

Reda Marzouk and Colin de la Higuera Recurrent Neural Language Models and Weighted Automata

Advantages and drawbacks

Advantages:

- High expressiveness power (as compared to other classes of weighted automata),
- Noise Robustness of Spectral approaches for extracting WA, **Drawbacks:**
- Not a generative model (Important for text generation)

Proposed approach

- Spectral approach (Ayache et al., 2018 [4])
- Regression in state space (Okudono et al., 2020 [5])

イロト イポト イヨト イヨト

Definition: Probabilistic finite automata

A probabilistic finite automaton (PFA) is a weighted automaton where α defines a probability distribution (the initial probability distribution), and $\forall \sigma \in \Sigma : A_{\sigma}(i, j)$ represents the probability of emitting symbol σ and transitioning to state *j*, when we are at state *i*

Figure: A graphical representation of a PFA (Vidal et al. [6])

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition: Probabilistic finite automata

A probabilistic finite automaton (PFA) is a weighted automaton where α defines a probability distribution (the initial probability distribution), and $\forall \sigma \in \Sigma : A_{\sigma}(i, j)$ represents the probability of emitting symbol σ and transitioning to state *j*, when we are at state *i*

Advantages and drawbacks

Advantages:

- Suitable for text generation tasks,
- Can be learnt using spectral approaches

Drawbacks:

• Though, the ouput of a spectral algorithm is given as an observable operator model (loss of weight interpretability)

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Deterministic PFA

Definition: Deterministic PFA

A deterministic PFA (DPFA) is a PFA such that:

- There is only one initial state,
- for each state q ∈ Q, for each symbol σ ∈ Σ, there is at most one transition,

Advantages and drawbacks

Advantages:

- Transparent and readily Interpretable,
- Can be used as a generative model

Drawbacks:

Low expressiveness power,

Proposed approach

L* variant for extracting PDFAs from RNN-LMs (Weiss et al. [7])

The complexity of comparing RNN Language models and Weighted Automata

Equivalence problem between a PDFA and consistent RNN-LMs with ReLu activation function

- Instance: A consistent RNN-LM with ReLu activation function R, a PDFA \mathcal{A} ,
- Problem: Are they equivalent?

Theorem (Marzouk, de la Higuera, 2020)

The equivalence problem between PDFA and consistent RNN-LMs with ReLu as an activation function is undecidable.

Equivalence problem between a PDFA and consistent RNN-LMs with ReLu activation function

- Instance: A consistent RNN-LM with ReLu activation function R, a PDFA \mathcal{A} ,
- Problem: Are they equivalent?

Theorem (Marzouk, de la Higuera, 2020)

The equivalence problem between PDFA and consistent RNN-LMs with ReLu as an activation function is undecidable.

• The proof is a reduction from the Halting Turing Machine problem.

・ロト ・四ト ・ヨト・ヨト・

Equivalence problem between a PDFA and consistent RNN-LMs with ReLu activation function

- Instance: A consistent RNN-LM with ReLu activation function R, a PDFA \mathcal{A} ,
- Problem: Are they equivalent?

Theorem (Marzouk, de la Higuera, 2020)

The equivalence problem between PDFA and consistent RNN-LMs with ReLu as an activation function is undecidable.

- The proof is a reduction from the Halting Turing Machine problem.
- As a corollary, same undecidability result holds for WFA/PFAs.

・ロト ・四ト ・ヨト・ヨト・

Equivalence problem between a PDFA and consistent RNN-LMs with ReLu activation function

- Instance: A consistent RNN-LM with ReLu activation function R, a PDFA \mathcal{A} ,
- Problem: Are they equivalent?

Theorem (Marzouk, de la Higuera, 2020)

The equivalence problem between PDFA and consistent RNN-LMs with ReLu as an activation function is undecidable.

- The proof is a reduction from the Halting Turing Machine problem.
- As a corollary, same undecidability result holds for WFA/PFAs.
- The equivalence problem in a bounded support is EXP-Hard.

イロト イポト イヨト イヨト

• Results on equivalence are negative. What about the approximation problem?

Approximation between a PFA and consistent RNN-LMs with ReLu activation function

• **Instance:** A consistent RNN-LM with ReLu activation function, a PFA \mathcal{A} , c > 0,

• **Problem:** Does there exist a word $w \in \Sigma^*$ such that $|R(w) - \mathcal{A}(w)| > c$?

Theorem (Marzouk, de la Higeura, 2020)

The approximation problem between a PFA and consistent RNN-LMs is decidable.

イロト イポト イヨト イヨト

Approximation between a PFA and consistent RNN-LMs with ReLu activation function in bounded support

- **Instance:** A consistent RNN-LM with ReLu activation function, a PFA \mathcal{A} , c > 0, N > 0
- **Problem:** Does there exist a word $w \in \Sigma^{\leq N}$ such that $|R(w) \mathcal{A}(w)| > c$?

Theorem (Marzouk, de la Higuera, 2020)

The approximation problem in a bounded support is NP-Hard.

• **Proof.** Reduction from the 3-SAT problem.

 Weighted Automata Extraction algorithms from RNN language models with theoretical garantees,

ヘロト ヘヨト ヘヨト ヘヨト

- Weighted Automata Extraction algorithms from RNN language models with theoretical garantees,
- Generalization of weighted automata to families of non-linear WAs with nice expressiveness and learnability properties,

イロト イポト イヨト イヨト

- Weighted Automata Extraction algorithms from RNN language models with theoretical garantees,
- Generalization of weighted automata to families of non-linear WAs with nice expressiveness and learnability properties,
- Expressiveness power of RNNs trained with Backprop:
 - Vanishing gradient regime,
 - Exploding gradient regime,
 - With additional components (e.g. attention mechanism etc.)

イロト イポト イヨト イヨト

Thanks for your attention

Reda Marzouk and Colin de la Higuera Recurrent Neural Language Models and Weighted Automata

イロト イヨト イヨト イヨト

- Y. Chen, S. Gilroy, A. Maletti, J. May, and K. Knight, "Recurrent neural networks as weighted language recognizers," in *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018, pp. 2261–2271.
- [2] S. Welleck, I. Kulikov, J. Kim, R. Y. Pang, and K. Cho, Consistency of a recurrent language model with respect to incomplete decoding, 2020. arXiv: 2002.02492 [cs.LG].
- [3] B. Balle and M. Mohri, "Generalization bounds for learning weighted automata," *Theor. Comput. Sci.*, vol. 716, no. C, pp. 89–106, Mar. 2018, ISSN: 0304-3975.

イロト イポト イヨト イヨト

- [4] S. Ayache, R. Eyraud, and N. Goudian, "Explaining black boxes on sequential data using weighted automata," in *ICGI*, 2018.
- [5] T. Okudono, M. Waga, T. Sekiyama, and I. Hasuo, "Weighted automata extraction from recurrent neural networks via regression on state spaces," in *AAAI*, 2020.
- [6] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco, "Probabilistic finite-state machines-part ii," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 27, no. 7, pp. 1026–1039, Jul. 2005.

[7] G. Weiss, Y. Goldberg, and E. Yahav, "Learning deterministic weighted automata with queries and counterexamples," in *Advances in Neural Information Processing Systems*,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/d3f93e7766e8e1b7ef66dfdd9a8be93b-Paper.pdf.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト