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Introduction
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Black box Models

Black box Models

Are subclass of machine learning models with complex functions which are
hard to explain, understand and interpret.

What are the features used in a model?

Which features effect a models decision?

Does the model consider sensitive features (race, religion, gender)?
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Explainability and Interpretability

Interpretability

Interpretability is the degree to which a human can understand the cause
of decision in machine or deep learning. [Mol20]

Explainability

Explainability is the degree to which a human can understand the internal
mechanics of a machine or deep learning. [Gal19]

Explainability > Interpretability
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Variations in Explainability and Interpretability

Category of Techniques

Global: A Technique which could explain a model’s behaviour for the
entire data distribution.

Local: A Technique which could explain a prediction for a particular
data-point.

Ante-hoc: A Technique which involves explainability from the
learning stage.

Post-hoc: A Technique which can be implemented after the model
has finished training.

Surrogate: A Technique which creates a different model
approximating the original model function
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Distillation of RNN to WFA

In our Approach: Distillation of RNN

We do not use Training Data.

We choose Student model (WFA) that is more Interpretable.

We use Information from Teacher model.
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Language Modelling Recurrent Neural Network (LM-RNN)

Language Modelling Recurrent Neural Network (LM-RNN)

Language Modelling Recurrent Neural Network is a recurrent neural
network designed to sequential data such as sentences in natural language.

Figure: LM-RNN [SYW16]

xt : one-hot vector of t-th letter

yt : t-th output.

h
(i)
t : t-th hidden vector of i-th layer.

Pt : t + 1 word’s probability.

E : Embedding Matrix.

Wh : Hidden layer Matrix.

Wo : Output layer Matrix.
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Probabilistic Finite Automata

Probabilistic Finite Automata

Probabilistic Finite Automaton (PFA) is a finite automaton whose
transitions and states carry probability measure.
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Contribution

PFA Distillation

Distillation of LM-RNN to Probabilistic Finite Automata by clustering over
hidden state space.
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Opening the black box

In almost all the previous approaches the only information we distill
from the LM-RNN is conditional probability.

Does LM-RNN has inner representations that could be useful?

Lets open the black box!

RNN vs LSTM [Col15]

ht = RNN(ht−1, xt)

1 Exploit the information of Hidden states and its space.

2 Does there exist a structure in this Hidden space that correspond to
the finite states of an automata?
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What is hidden state?

Hidden state at time ht : h0t · C 0
t · h1t · C 1

t

Figure: LM-RNN [SYW16]
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PFA Distillation
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PFA Distillation

Figure: PCA Plot of Hidden Vectors

1 Sample sequences Z and
respective Hidden state vectors
Hz .

2 Obtain clusters over the vectors
sampled.

3 Fill the transitions between
clusters by observing all the
transitions between hidden
vector states.

4 The probabilities are filled for a
transition with the fraction of
samples that support a
transition in a cluster.
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PFA Distillation

Figure: Vernoi boundaries of K-Means
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Results
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Datasets

1 SPiCe: 15 Real World sequential datasets from various domains.

2 PAutomaC: 48 artificial generated data from HMM, PFA and PDFA.
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Metrics - NDCG5

Normalized Discounted Cumulative Gain(NDCG)

NDCG is a popular metric to measure ranking quality. It compares the
probabilities of top k candidates between learned and Ideal Model.

NDCGn(w , σ̂1, ..., σ̂n) =
Σn
k=0

PWA(σ̂k |w)
log(k+1)

Σn
k=0

PRNN(σk |w)
log(k+1)

We are comparing the probability distribution between LM-RNN and WFA.
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Results- SPiCe

PFA Distillation shows
significant improvements in
NDCG Score.
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PFA Distillation: Change of NDCG with number of clusters

With the increase in number of cluster NDCG5 keeps increasing but
the improvements diminish along the way.
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PFA Distillation: NDCG on PAutomaC

PFA Distillation shows
significant improvements in
NDCG Score to Spectral
Distillation.

The results of PFA Distillation
on PAutomaC show Finite
States in the hidden state space.
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Conclusions
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Conclusions

Hidden states and its Space has information to understand LM-RNN
behaviour.

On Artificial datasets PFA’s extracted approximates the LM-RNN
almost perfectly.

On Real world datasets PFA’s extracted very closely approximates the
LM-RNN.

From entropy analysis, PFA’s are fairly deterministic.

Zhang, Xiyue, et al. ”Decision-Guided Weighted Automata
Extraction from Recurrent Neural Networks.”2021 [ZDX+21]
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Thank you
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