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Abstract

We present a simple context-free grammatical inference
algorithm, and prove that it is capable of learning an
interesting subclass of context-free languages. We also
demonstrate that an implementation of this algorithm
is capable of learning auxiliary fronting in polar inter-
rogatives (AFIPI) in English. This has been one of the
most important test cases in language acquisition over
the last few decades. We demonstrate that learning can
proceed even in the complete absence of examples of
particular constructions, and thus that debates about
the frequency of occurrence of such constructions are ir-
relevant. We discuss the implications of this on the type
of innate learning biases that must be hypothesized to
explain first language acquisition.

Introduction

For some years, a particular set of examples has been
used to provide support for nativist theories of first lan-
guage acquisition (FLA). These examples, which hinge
around auxiliary inversion in the formation of questions
in English, have been considered to provide a strong ar-
gument in favour of the nativist claim: that FLA pro-
ceeds primarily through innately specified domain spe-
cific mechanisms or knowledge, rather than through the
operation of general-purpose cognitive mechanisms. A
key point of empirical debate is the frequency of occur-
rence of the forms in question. If these are vanishingly
rare, or non-existent in the primary linguistic data, and
yet children acquire the construction in question, then
the hypothesis that they have innate knowledge would
be supported. But this rests on the assumption that
examples of that specific construction are necessary for
learning to proceed. In this paper we show that this as-
sumption is false: that this particular construction can
be learned without the learner being exposed to any
examples of that particular type. Our demonstration
is primarily mathematical/computational: we present a
simple experiment that demonstrates the applicability of
this approach to this particular problem neatly, but the
data we use is not intended to be a realistic representa-
tion of the primary linguistic data, nor is the particular
algorithm we use suitable for large scale grammar induc-
tion.

We present a general purpose context-free grammat-
ical algorithm that is provably correct under a certain
learning criterion. This algorithm incorporates no do-
main specific knowledge: it has no specific information

about language; no knowledge of X-bar schemas, no hid-
den sources of information to reveal the structure. It
operates purely on unannotated strings of raw text. Ob-
viously, as all learning algorithms do, it has an implicit
learning bias. This very simple algorithm has a particu-
larly clear bias, with a simple mathematical description,
that allows a remarkably simple characterisation of the
set of languages that it can learn. This algorithm does
not use a statistical learning paradigm that has to be
tested on large quantities of data. Rather it uses a sym-
bolic learning paradigm, that works efficiently with very
small quantities of data, while being very sensitive to
noise. We discuss this choice in some depth below.

For reasons that were first pointed out by Chomsky
(Chomsky, 1975, pages 129–137), algorithms of this type
are not capable of learning all of natural language. It
turns out, however, that algorithms based on this ap-
proach are sufficiently strong to learn some key prop-
erties of language, such as the correct rule for forming
polar questions.

In the next section we shall describe the dispute
briefly; in the subsequent sections we will describe the al-
gorithm we use, and the experiments we have performed.

The Dispute
We will present the dispute in traditional terms, though
later we shall analyse some of the assumptions implicit
in this description. In English, polar interrogatives
(yes/no questions) are formed by fronting an auxiliary,
and adding a dummy auxiliary “do” if the main verb is
not an auxiliary. For example,

Example 1a The man is hungry.

Example 1b Is the man hungry?
When the subject NP has a relative clause that also

contains an auxiliary, the auxiliary that is moved is not
the auxiliary in the relative clause, but the one in the
main (matrix) clause.

Example 2a The man who is eating is hungry.

Example 2b Is the man who is eating hungry?
An alternative rule would be to move the first occur-

ring auxiliary, i.e. the one in the relative clause, which
would produce the form
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Example 2c Is the man who eating is hungry?
In some sense, there is no reason that children should

favour the correct rule, rather than the incorrect one,
since they are both of similar complexity and so on. Yet
children do in fact, when provided with the appropriate
context, produce sentences of the form of Example 2b,
and rarely if ever produce errors of the form Example
2c (Crain & Nakayama, 1987). The problem is how to
account for this phenomenon.

Chomsky claimed first, that sentences of the type in
Example 2b are vanishingly rare in the linguistic envi-
ronment that children are exposed to, yet when tested
they unfailingly produce the correct form rather than
the incorrect Example 2c. This is put forward as strong
evidence in favour of innately specified language specific
knowledge: we shall refer to this view as linguistic na-
tivism.

In a special volume of the Linguistic Review, Pullum
and Scholz (Pullum & Scholz, 2002), showed that in fact
sentences of this type are not rare at all. Much discus-
sion ensued on this empirical question and the conse-
quences of this in the context of arguments for linguis-
tic nativism. These debates revolved around both the
methodology employed in the study, and also the conse-
quences of such claims for nativist theories. It is fair to
say that in spite of the strength of Pullum and Scholz’s
arguments, nativists remained completely unconvinced
by the overall argument.

(Reali & Christiansen, 2004) present a possible so-
lution to this problem. They claim that local statis-
tics, effectively n-grams, can be sufficient to indicate to
the learner which alternative should be preferred. How-
ever this argument has been carefully rebutted by (Kam,
Stoyneshka, Tornyova, Fodor, & Sakas, 2005), who show
that this argument relies purely on a phonological coinci-
dence in English. This is unsurprising since it is implau-
sible that a flat, finite-state model should be powerful
enough to model a phenomenon that is clearly structure
dependent in this way.

In this paper we argue that the discussion about the
rarity of sentences that exhibit this particular structure
is irrelevant: we show that simple grammatical inference
algorithms can learn this property even in the complete
absence of sentences of this particular type. Thus the
issue as to how frequently an infant child will see them
is a moot point.

Algorithm
Context-free grammatical inference algorithms are ex-
plored in two different communities: in grammatical in-
ference and in NLP. The task in NLP is normally taken
to be one of recovering appropriate annotations (Smith &
Eisner, 2005) that normally represent constituent struc-
ture (strong learning), while in grammatical inference,
researchers are more interested in merely identifying the
language (weak learning). In both communities, the
best performing algorithms that learn from raw positive
data only 1, generally rely on some combination of three

1We do not consider in this paper the complex and con-
tentious issues around negative data.

heuristics: frequency, information theoretic measures of
constituency, and finally substitutability. 2 The first
rests on the observation that strings of words generated
by constituents are likely to occur more frequently than
by chance. The second heuristic looks for information
theoretic measures that may predict boundaries, such as
drops in conditional entropy. The third method which
is the foundation of the algorithm we use, is based on
the distributional analysis of Harris (Harris, 1954). This
principle has been appealed to by many researchers in
the field of grammatical inference, but these appeals have
normally been informal and heuristic (Zaanen, 2000).

In its crudest form we can define it as follows: given
two sentences “I saw a cat over there”, and “I saw a dog
over there” the learner will hypothesize that “cat” and
“dog” are similar, since they appear in the same context
“I saw a __ there”. Pairs of sentences of this form can
be taken as evidence that two words, or strings of words
are substitutable.

Preliminaries
We will present a formal analysis here using a minimal
amount of notation; for complete definitions and a full
proof the reader is referred to (Clark & Eyraud, 2005).
We will use some basic ideas from formal language the-
ory. We have a finite alphabet, which is a non-empty
set of symbols, which we denote by Σ. In this case the
symbols will be words. We consider all finite sequences
of these symbols; the set of all such finite symbols is de-
noted by Σ∗. A formal language L is a subset of Σ∗,
and since we are concerned here with syntax, we will be
considering L to be the set of all grammatical sentences.

We can represent languages, which will generally be
infinite or at least very large sets, in a variety of ways.
Here we will use context free grammars, which consist of
a set of non-terminal symbols V which will correspond
normally to constituents like NP, VP and so on. We will
have a set of productions, or rewrite rules which we write
as N → α, where N ∈ V and α is a non empty string
of non-terminal and terminal symbols, which will be the
alphabet Σ. We will also have a distinguished element
S of V which represents the sentence symbol. If we can
derive a string of symbols β from another string α, by
using one application of a production in the grammar,
then we will say α ⇒ β, and we will write α

∗⇒ β if
the derivation uses zero or more derivation steps. This
defines a language, a subset of Σ∗ written L(G) = {w ∈
Σ∗ : S

∗⇒ w}, which is just the set of all strings that can
be derived from the senence symbol using the rules in
the grammar. This is the most standard representation
for defining languages, but it is important to note that
there are many other forms.

Learning
We now define our learning criterion. This is identifica-
tion in the limit from positive text (Gold, 1967), with
polynomial bounds on data and computation, but not
on errors of prediction (de la Higuera, 1997).

2For completeness we should include lexical dependencies
or attraction.

1128



This means that our learning algorithm is going to be
presented with examples from sentences in the language
(grammatical sentences) in sequence, one at a time, and
that it must hypothesize a grammar for the language
at each step. In the identification in the limit frame-
work, there is only one constraint: every grammatical
sentence must eventually appear. This means that this
model of learning is unreasonably difficult, as we have
to learn even when the examples are being ordered in
a deliberately misleading way. Since we would expect
the examples to be either random or helpfully chosen,
this limits the sorts of language classes that we can get
learnability results for.

We say that an algorithm identifies in the limit a class
of languages, if eventually it will converge to exactly
the right answer; i.e. it will make only a finite num-
ber of errors. We further require that the algorithm
needs only polynomially bounded amounts of data and
computation. We use the definition of de la Higuera
(de la Higuera, 1997). Since the ordering of the data is
potentially misleading, the requirement for polynomial
amounts of data translates into the requirement for a
polynomial characteristic set – a set of sentences, of size
polynomial in the size of the representation, the number
of symbols in the grammar in this case, such that once
we have seen this set of sentences, the learner will have
converged to the right answer.

The other important constraint is that the amount of
computation is limited. Human children do not have
infinite computational power, and thus we must restrict
our attention to algorithms that can run efficiently; thus
we require worst case polynomial complexity, where the
polynomial is in the total length of the data presented.
We require rapid learning, and this shows up both in the
limited amount of data we allow the learner access to,
and the limited amount of computational time that we
allow the learner to use. There are better formal models
of first language acquisition than this, but the simplicity
of this one allows for very simple proofs.

Distributional learning
The key to the Harris approach for learning a language
L, is to look at pairs of substrings u and v and to see
whether they occur in the same contexts; that is to say,
to look for pairs of strings of the form lur and lvr that
are both in L. This can be taken as evidence that there
is a non-terminal symbol that generates both strings. In
the informal descriptions of this that appear in Harris’s
work, there is an ambiguity between two ideas. The
first is that they should appear in all the same contexts;
and the second is that they should appear in some of
the same contexts. We can write the first criterion as
follows:

∀l, r lur ∈ L if and only if lvr ∈ L (1)

This has also been known in language theory by the
name syntactic congruence, and can be written u ≡L v.

The second, weaker, criterion is

∃l, r lur ∈ L and lvr ∈ L (2)

We call this weak substitutability and write it as u
.=L

v. Clearly u ≡L v implies u
.=L v when u is a sub-

string of the language. Any two strings that do not occur
as substrings of the language are obviously syntactically
congruent but not weakly substitutable.

First of all, observe that syntactic congruence is a
purely language theoretic notion that makes no refer-
ence to the grammatical representation of the language,
but only to the set of strings that occur in it. However
there is an obvious problem: syntactic congruence tells
us something very useful about the language, but all we
can observe is weak substitutability.

When working within a Gold-style identification in the
limit (IIL) paradigm, we cannot rely on statistical prop-
erties of the input sample, since they will in general not
be generated by random draws from a fixed distribution.
This, as is well known, severely limits the class of lan-
guages that can be learned under this paradigm. How-
ever, the comparative simplicity of the IIL paradigm in
the form when there are polynomial constraints on size of
characteristic sets and computation(de la Higuera, 1997)
makes it a suitable starting point for analysis.

Given these restrictions, one solution to this problem
is simply to define a class of languages where substi-
tutability implies congruence. We call these the sub-
stitutable languages: A language L is substitutable if
and only if for every pair of strings u, v, u

.=L v implies
u ≡L v. This rather radical solution clearly rules out
the syntax of natural languages, at least if we consider
them as strings of raw words, rather than as strings of
lexical or syntactic categories. Lexical ambiguity alone
violates this requirement: consider the sentences “The
rose died”, “The cat died” and “The cat rose from its
basket”. A more serious problem is pairs of sentences
like “John is hungry” and “John is running”, where it is
not ambiguity in the syntactic category of the word that
causes the problem, but rather ambiguity in the con-
text. Using this assumption, whether it is true or false,
we can then construct a simple algorithm for grammati-
cal inference, based purely on the idea that whenever we
find a pair of strings that are weakly substitutable, we
can generalise the hypothesized language so that they
are syntactically congruent.

The algorithm proceeds by constructing a graph where
every substring in the sample defines a node. An arc is
drawn between two nodes if and only if the two nodes
are weakly substitutable with respect to the sample, i.e.
there is an arc between u and v if and only if we have
observed in the sample strings of the form lur and lvr.
Clearly all of the strings in the sample will form a clique
in this graph (consider when l and r are both empty
strings). The connected components of this graph can
be computed in time polynomial in the total size of the
sample. If the language is substitutable then each of
these components will correspond to a congruence class
of the language.

There are two ways of doing this: one way, which is
perhaps the purest involves defining a reduction system
or semi-Thue system which directly captures this gen-
eralisation process. The second way, which we present
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here, will be more familiar to computational linguists,
and involves constructing a grammar.

Grammar construction
Simply knowing the syntactic congruence might not ap-
pear to be enough to learn a context-free grammar, but
in fact it is. Given the syntactic congruence, and a sam-
ple of the language, we can simple write down a grammar
in Chomsky normal form, and under quite weak assump-
tions this grammar will converge to a correct grammar
for the language.

This construction relies on a simple property of the
syntactic congruence, namely that is in fact a congru-
ence: i.e.,

u ≡L v implies ∀l, r lur ≡L lvr

We can construct a grammar in the following trivial
way, from a sample of strings where we are given the
syntactic congruence.

• The non-terminals of the grammar are identified with
the congruence classes of the language.

• For any string w = uv , we add a production [w] →
[u][v].

• For all strings a of length one (i.e. letters of Σ), we
add productions of the form [a] → a.

• The start symbol is the congruence class which con-
tains all the strings of the language.

This defines a grammar in CNF. At first sight, this
construction might appear to be completely vacuous,
and not to define any strings beyond those in the sample.
The situation where it generalises is when two different
strings are congruent: if uv = w ≡ w′ = u′v′ then we will
have two different rules [w] → [u][v] and [w] → [u′][v′],
since [w] is the same non-terminal as [w′].

A striking feature of this algorithm is that it makes
no attempt to identify which of these congruence classes
correspond to non-terminals in the target grammar. In-
deed that is to some extent an ill-posed question. There
are many different ways of assigning constituent struc-
ture to sentences, and indeed some reputable theories
of syntax, such as dependency grammars, dispense with
the notion of constituent structure all together. De facto
standards, such as the Penn treebank annotations are a
somewhat arbitrary compromise among many different
possible analyses. This algorithm instead relies on the
syntactic congruence, which expresses the combinatorial
structure of the language in its purest form.

Proof
We will now present our main result, with an outline
proof. For a full proof the reader is referred to (Clark &
Eyraud, 2005).

Theorem 1 This algorithm polynomially identifies in
the limit the class of substitutable context-free lan-
guages.

Proof (Sketch) We can assume without loss of gen-
erality that the target grammar is in Chomsky normal
form. We first define a characteristic set, that is to say
a set of strings such that whenever the sample includes
the characteristic set, the algorithm will output a correct
grammar.

Using some shortest first order on strings, we define
w(α) ∈ Σ∗ to be the smallest word, generated by α ∈
(Σ ∪ V )+. For each non-terminal N ∈ V define c(N) to
be the smallest pair of terminal strings (l, r), such that
S

∗⇒ lNr.
We can now define the characteristic set CS =

{lwr|(N → α) ∈ P, (l, r) = c(N), w = w(α)}. The car-
dinality of this set is at most |P | which is clearly poly-
nomially bounded. We observe that the computations
involved can all be polynomially bounded in the total
size of the sample.

We next show that whenever the algorithm encoun-
ters a sample that includes this characteristic set, it out-
puts the right grammar. We write Ĝ for the learned
grammar. Suppose [u] ∗⇒Ĝ v. Then we can see that
u ≡L v by induction on the maximum length of the
derivation of v. At each step we must use some rule
[u′] ⇒ [v′][w′]. It is easy to see that every rule of this
type preserves the syntactic congruence of the left and
right sides of the rules. Intuitively, the algorithm will
never generate too large a language, since the languages
are substitutable. Conversely, if we have a derivation
of a string u with respect to the target grammar G,
by construction of the characteristic set, we will have,
for every production L → MN in the target grammar,
a production in the hypothesized grammar of the form
[w(L)] → [w(M)][w(N)], and for every production of the
form L → a we have a production [w(L)] → a. A simple
recursive argument shows that the hypothesized gram-
mar will generate all the strings in the target language.
Thus the grammar will generate all and only the strings
required (QED).

Related work
This is the first provably correct and efficient gram-
matical inference algorithm for a linguistically interest-
ing class of context-free grammars (but see for example
(Yokomori, 2003) on the class of very simple grammars).
It can also be compared to Angluin’s famous work on
reversible grammars (Angluin, 1982) which inspired a
similar paper(Pilato & Berwick, 1985).

Experiments
We decided to see whether this algorithm without mod-
ification could shed some light on the debate discussed
above. The experiments we present here are not intended
to be an exhaustive test of the learnability of natural
language. The focus is on determining whether learning
can proceed in the absence of positive samples, and given
only a very weak general purpose bias.

Implementation
We have implemented the algorithm described above.
There are a number of algorithmic issues that were ad-
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the man who is hungry died .
the man ordered dinner .
the man died .
the man is hungry .
is the man hungry ?
the man is ordering dinner .
is the man who is hungry ordering dinner ?
∗is the man who hungry is ordering dinner ?

Table 1: Auxiliary fronting data set. Examples above
the line were presented to the algorithm during the train-
ing phase, and it was tested on examples below the line.

dressed. First, in order to find which pairs of strings
are substitutable, the naive approach would be to com-
pare strings pairwise which would be quadratic in the
number of sentences. A more efficient approach main-
tains a hashtable mapping from contexts to congruence
classes. Caching hashcodes, and using a union-find al-
gorithm for merging classes allows an algorithm that is
effectively linear in the number of sentences.

In order to handle large data sets with thousands of
sentences, it was necessary to modify the algorithm in
various ways which slightly altered its formal properties.
However for the experiments reported here we used a
version which performs exactly in line with the mathe-
matical description above.

Data
For clarity of exposition, we have used extremely small
artificial data-sets, consisting only of sentences of types
that would indubitably occur in the linguistic experience
of a child.

Our first experiments were intended to determine
whether the algorithm could determine the correct form
of a polar question when the noun phrase had a rela-
tive clause, even when the algorithm was not exposed to
any examples of that sort of sentence. We accordingly
prepared a small data set shown in Table 1. Above the
line is the training data that the algorithm was trained
on. It was then tested on all of the sentences, including
the ones below the line. By construction the algorithm
would generate all sentences it has already seen, so it
scores correctly on those. The learned grammar also cor-
rectly generated the correct form and did not generate
the final form.

We can see how this happens quite easily since the
simple nature of the algorithm allows a straightforward
analysis. We can see that in the learned grammar “the
man” will be congruent to “the man who is hungry”,
since there is a pair of sentences which differ only by
this. Similarly, “hungry” will be congruent to “order-
ing dinner”. Thus the sentence “is the man hungry ?”
which is in the language, will be congruent to the correct
sentence.

Our second data set is shown in Table 2, and is a
fragment of the English auxiliary system. This has also
been claimed to be evidence in favour of nativism. This
was discussed in some detail by (Pilato & Berwick, 1985).

it rains
it may rain
it may have rained
it may be raining
it has rained
it has been raining
it is raining
it may have been raining
∗it may have been rained
∗it may been have rain
∗it may have been rain

Table 2: English auxiliary data. Training data above the
line, and testing data below.

Again the algorithm correctly learns.

Discussion
Chomsky was among the first to point out the limita-
tions of Harris’s approach, and it is certainly true that
the grammars produced from these toy examples over-
generate radically. On more realistic language samples
this algorithm would eventually start to generate even
the incorrect forms of polar questions.

Given the solution we propose it is worth looking again
and examining why nativists have felt that AFIPI was
such an important issue. It appears that there are sev-
eral different areas. First, the debate has always focussed
on how to construct the interrogative from the declara-
tive form. The problem has been cast as finding which
auxilary should be “moved”. Implicit in this is the as-
sumption that the interrogative structure must be de-
fined with reference to the declarative, one of the cen-
tral assumptions of traditional transformational gram-
mar. Now, of course, given our knowledge of many differ-
ent formalisms which can correctly generate these forms
without movement we can see that this assumption is
false. There is of course a relation between these two
sentences, a semantic one, but this does not imply that
there need be any particular syntactic relation, and cer-
tainly not a “generative” relation.

Secondly, the view of learning algorithms is very nar-
row. It is considered that only sentences of that exact
type could be relevant. We have demonstrated, if noth-
ing else, that that view is false. The distinction can be
learnt from a set of data that does not include any ex-
ample of the exact piece of data required: as long as the
various parts can be learned separately, the combination
will function in the natural way.

A more interesting question is the extent to which the
biases implicit in the learning algorithm are domain spe-
cific. Clearly the algorithm has a strong bias. One of
the advantages of the algorithm for the purposes of this
paper is that its triviality allows a remarkably clear and
explicit statement of its bias. But is this bias specific
to the domain of language? It in no way refers to any-
thing specific to the field of language, still less specific
to human language – no references to parts of speech,
or phrases, or even hierarchical phrase structure. It is
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now widely recognised that this sort of recursive struc-
ture is domain-general (Jackendoff & Pinker, 2005). It
is even possible, at some computational cost, to define
this model without using a grammar at all, but merely
using the congruence directly in what is called a Thue
system.

We have selected for this demonstration an algorithm
from grammatical inference. A number of statistical
models have been proposed over the last few years by
researchers such as (Klein & Manning, 2002, 2004) and
(Solan, Horn, Ruppin, & Edelman, 2005). These mod-
els impressively manage to extract significant structure
from raw data. However, for our purposes, neither of
these models is suitable. Klein and Manning’s model
uses a variety of different cues, which combine with some
specific initialisation and smoothing, and an explicit con-
straint to produce binary branching trees. Though very
impressive, the model is replete with domain-specific bi-
ases and assumptions. The model by Solan et al. would
be more suitable for this task, but again the complex-
ity of the algorithm, which has numerous components
and heuristics, and the lack of a theoretical justifica-
tion for these heuristics again makes the task of identify-
ing exactly what these biases are, and more importantly
how domain specific they are, a very significant problem.
Since both of these approaches attempt to recover con-
stituent structures, it is not clear that they will be able
to learn these sorts of phenomena, which require either
composition of partial constituents, or movement, to be
able to generate the correct examples.

A more powerful variant of this algorithm can be de-
fined that is sensitive to the statistical properties of the
sample, and under reasonable assumptions can be proven
to learn a larger class of languages, but the complexity of
the analysis makes it unsuitable for this demonstration.

Conclusion
We have presented an analysis of the argument that the
acquisition of auxiliary fronting in polar interrogatives
supports linguistic nativism. We have shown how a very
simple algorithm based on the ideas of Zellig Harris,
can explain this problem with a simple domain-general
heuristic. we show that the empirical question as to the
frequency of occurrence of polar questions of a certain
type in child-directed speech is irrelevant, since the dis-
tinction in question can be learned even when no such
sentences are observed.
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