Koszul calculus of preprojective algebras

Roland Berger
Université de Saint-Etienne
Institut Camille Jordan
CNRS UMR 5208

This is a joint work with Rachel Taillefer, appeared in J. London Math. Soc. (2020), 52 pages.

Plan

(1) Extending Koszul calculus to quadratic quiver algebras
(2) A Poincaré Van den Bergh duality for preprojective algebras
(3) A generalisation of the Calabi-Yau property

4 Strong Kc-Calabi-Yau algebras
(5) Tables of dimensions

6 The first non-Koszul example : the type A_{3}

Koszul calculus of a quadratic quiver algebra A

Fix a finite quiver $\mathcal{Q}=\left(\mathcal{Q}_{0}, \mathcal{Q}_{1}\right)$ and a field \mathbb{F}.
The vertex space $k=\mathbb{F} \mathcal{Q}_{0}$ is a commutative ring by associating with \mathcal{Q}_{0} a complete set of orthogonal idempotents $e_{i}, i \in \mathcal{Q}_{0}$.

The arrow space $V=\mathbb{F} \mathcal{Q}_{1}$ is a k-bimodule. The tensor k-algebra $T_{k}(V)$ of V is isomorphic to the path algebra $\mathbb{F} \mathcal{Q}$.

Let R be a sub- k-bimodule of $V \otimes_{k} V \cong \mathbb{F} \mathcal{Q}_{2}$. The associative k-algebra $A=T_{k}(V) /(R)$ is called a quadratic algebra over \mathcal{Q} and \mathbb{F}. It is graded by the path length with $A_{0} \cong k$ and $A_{1} \cong V$.

In the one vertex case $k=\mathbb{F}$, the Koszul calculus was defined and studied in
R. Berger, T. Lambre, A. Solotar, Koszul calculus, Glasg. Math. J. 2018.

Defining the Koszul bimodule complex $K(A)$

For any $p \geq 0, W_{p}$ denotes the sub- k-bimodule of $V^{\otimes k p} \subseteq A^{\otimes k p}$ defined by

$$
W_{p}=\bigcap_{i+2+j=p} V^{\otimes_{k} i} \otimes_{k} R \otimes_{k} V^{\otimes_{k} j}
$$

$K(A)$ is the subcomplex of the bar resolution $B(A)$ defined by the sub- A-bimodules $A \otimes_{k} W_{p} \otimes_{k} A$ of $A \otimes_{k} A^{\otimes k} p \otimes_{k} A$.

The differential d of $K(A)$ is given on $A \otimes_{k} W_{p} \otimes_{k} A$ by
$d\left(a \otimes_{k} x_{1} \ldots x_{p} \otimes_{k} a^{\prime}\right)=a x_{1} \otimes_{k} x_{2} \ldots x_{p} \otimes_{k} a^{\prime}+(-1)^{p} a \otimes_{k} x_{1} \ldots x_{p-1} \otimes_{k} x_{p} a^{\prime}$.
When $K(A)$ is a resolution of A, A is said to be Koszul.

Defining the Koszul calculus of A

For any A-bimodule M, we replace the bar resolution $B(A)$ by $K(A)$ in the definition of the Hochschild spaces $\mathrm{HH}_{\rho}(A, M)$ and $\mathrm{HH}^{p}(A, M)$, and we obtain the Koszul spaces $\mathrm{HK}_{p}(A, M)$ and $\mathrm{HK}^{p}(A, M)$.

The inclusion $K(A) \hookrightarrow B(A)$ induces linear maps

$$
\mathrm{HK}_{p}(A, M) \rightarrow \mathrm{HH}_{p}(A, M), \mathrm{HH}^{p}(A, M) \rightarrow \mathrm{HK}^{p}(A, M)
$$

which are always isomorphisms for $p=0$ and $p=1$, and if A is Koszul these maps are isomorphisms for any p.

We also need cup and cap products on Koszul cohomology and homology. They are defined by restricting the standard cup and cap products defined on Hochschild cochains and chains. For example the Koszul cup product is defined as follows.

Defining the Koszul calculus of A

Let P, Q be A-bimodules. For Koszul cochains $f \in \operatorname{Hom}_{k^{e}}\left(W_{p}, P\right)$ and $g \in \operatorname{Hom}_{k e}\left(W_{q}, Q\right), f \breve{K}^{-} g \in \operatorname{Hom}_{k^{e}}\left(W_{p+q}, P \otimes_{A} Q\right)$ is given by

$$
\left(f_{\kappa} g\right)\left(x_{1} \ldots x_{p+q}\right)=(-1)^{p a} f\left(x_{1} \ldots x_{p}\right) \otimes_{A} g\left(x_{p+1} \ldots x_{p+q}\right) .
$$

Then $\tilde{A}=\left(\operatorname{Hom}_{k e}\left(W_{\bullet}, A\right), b_{K}, \breve{K}\right)$ is a DG algebra and $\operatorname{Hom}_{k e}\left(W_{\bullet}, M\right)$
is a $D G \tilde{A}$-bimodule for left and right actions $\underset{K}{\breve{K}}$. Similarly $M \otimes_{k e} W_{0}$ is a DG \tilde{A}-bimodule for actions $\overparen{\kappa}$.

The Koszul calculus of A consists of the graded associative algebra $\left(\mathrm{HK}^{\bullet}(A), \breve{K}\right)$ and of the graded $\mathrm{HK}^{\bullet}(A)$-bimodules $\mathrm{HK}^{\bullet}(A, M)$ and HK. (A, M) for all A-bimodules M. When $M=A$, the Koszul calculus is said to be restricted.

Preprojective algebras

Let Q be a quiver whose underlying graph is denoted by Δ. Define a quiver Q^{*} whose vertex set is Q_{0} and whose arrow set is $Q_{1}^{*}=\left\{a^{*} ; a \in Q_{1}\right\}$ where $\mathfrak{s}\left(a^{*}\right)=\mathfrak{t}(a)$ and $\mathfrak{t}\left(a^{*}\right)=\mathfrak{s}(a)$.

Let \bar{Q} be the quiver whose vertex set is $\bar{Q}_{0}=Q_{0}$ and whose arrow set is the disjoint union $\bar{Q}_{1}=Q_{1} \cup Q_{1}^{*}$.

Let \mathbb{F} be a field. As before, $k=\mathbb{F} Q_{0}, V=\mathbb{F} \bar{Q}_{1}$, and $T_{k}(V) \cong \mathbb{F} \bar{Q}$.
The preprojective algebra $A(\Delta)$ is the quadratic k-algebra over \bar{Q} defined by the quadratic relations

$$
\sigma_{i}:=\sum_{\substack{a \in Q_{1} \\ \mathfrak{t}(a)=i}} a a^{*}-\sum_{\substack{a \in Q_{1} \\ \mathfrak{s}(a)=i}} a^{*} a
$$

for all $i \in Q_{0}$.

Why preprojective algebras are of interest for us?

If a quadratic quiver algebra A is Koszul, its Koszul invariants are the same as its Hochschild invariants. If A is not Koszul, new invariants can be expected. The following is standard.

Proposition

Assume that the graph Δ is distinct from A_{1} and A_{2}. The following are equivalent.
(i) Δ is Dynkin of type ADE.
(ii) $A(\Delta)$ is not Koszul.
(iii) $A(\Delta)$ is finite dimensional.

In our paper, we compute the restricted Koszul calculus of the ADE preprojective algebras A. From these computations, we prove that the inclusion $\operatorname{HH}^{2}(A) \hookrightarrow \operatorname{HK}^{2}(A)$ is not surjective, except in type E_{8} with $\operatorname{char}(\mathbb{F})=2$.

A Poincaré Van den Bergh duality

In our paper, we prove the following.

Theorem

Let A be the preprojective algebra of a connected graph Δ distinct from A_{1} and A_{2}, over a field \mathbb{F}. Let M be an A-bimodule.
(i) The complex $K(A)$ has length 2. In particular, $\operatorname{HK}^{p}(A, M)=\operatorname{HK}_{p}(A, M)=0$ for any $p>2$.
(ii) The $\mathrm{HK}^{\bullet}(A)$-bimodules $\mathrm{HK}^{\bullet}(A, M)$ and $\mathrm{HK}_{2-\bullet}(A, M)$ are isomorphic.

Consequently, the Koszul calculus in homology can be deduced from the Koszul calculus in cohomology.
Now we want to explain (i) and (ii) in more details.

(i) $K(A)$ has length 2

Since $W_{p}=\left(W_{p-1} \otimes_{k} V\right) \cap\left(V \otimes_{k} W_{p-1}\right)$ for all $p>2$ and $W_{2}:=R \neq 0$, it suffices to prove that

$$
W_{3}:=\left(R \otimes_{k} V\right) \cap\left(V \otimes_{k} R\right)=0
$$

We assume that $\Delta \neq \mathrm{A}_{1}$ and prove that $W_{3} \neq 0$ implies $\Delta=\mathrm{A}_{2}$:
Let u be a non-zero element in W_{3}. We may assume that u is in $e W_{3} f$ for some vertices e and f. Then u can be written uniquely in the basis of $R \otimes_{k} V$ and in the basis of $V \otimes_{k} R$. Comparing the two decompositions, we show that

$$
e \neq f, Q_{0}=\{e, f\},\left|Q_{1}\right|=1
$$

Thus $\Delta=\mathrm{A}_{2}$.

(ii) the duality $\mathrm{HK}^{p}(A, M) \cong \mathrm{HK}_{2-p}(A, M)$

This isomorphism comes from an explicit isomorphism from the complex defining $\mathrm{HK}^{p}(A, M)$ to the complex defining $\mathrm{HK}_{2-p}(A, M)$:

Theorem

Define $\omega_{0}=\sum_{i} e_{i} \otimes \sigma_{i}$. It is a Koszul 2-cycle with coefficients in A. For each Koszul p-cochain f with coefficients in M, we define the Koszul ($2-p$)-chain $\theta_{M}(f)$ with coefficients in M by

$$
\theta_{M}(f)=\omega_{0} \overparen{K} f
$$

Then θ_{M} is an isomorphism of complexes. Moreover, the equalities

$$
\theta_{M \otimes_{A} N}\left(f_{K} g\right)=\theta_{M}(f) \overparen{K} g=f \overparen{K} \theta_{N}(g)
$$

hold for Koszul cochains f and g with coefficients in M and N.

A fundamental class for the duality

Passing the isomorphism of complexes

$$
\theta_{M}=\omega_{0} \overparen{K}-: \operatorname{Hom}_{k^{e}}\left(W_{\bullet}, M\right) \rightarrow M \otimes_{k^{e}} W_{2-\bullet}
$$

to homology, we get a linear isomorphism

$$
H\left(\theta_{M}\right)=\bar{\omega}_{0} \overparen{K}-: \operatorname{HK}^{\bullet}(A, M) \rightarrow \mathrm{HK}_{2-\bullet}(A, M)
$$

So the class $\bar{\omega}_{0} \in \mathrm{HK}_{2}(A)$ is an analogue of the fundamental class used in the classical Poincaré's duality for singular (co)homology.

A generalisation of the 2-Calabi-Yau property

Take $M=A^{e}:=A \otimes A^{o p}$ in our duality and identify $A^{e} \otimes_{k^{e}} W_{\bullet}$ to $K(A)$. We obtain an isomorphism of complexes

$$
\theta_{A^{e}}: \operatorname{Hom}_{k^{e}}\left(W_{\bullet}, A^{e}\right) \rightarrow K(A)[-2] \text { in } A \text {-Bimod }
$$

inducing an isomorphism

$$
\operatorname{RHom}_{A^{e}}\left(K(A), A^{e}\right) \rightarrow K(A)[-2] \text { in } \mathcal{D}^{b}(A \text {-Bimod })
$$

Then we say that A is Koszul complex Calabi-Yau of dimension 2.
Assume that Δ is not Dynkin ADE, so that A is Koszul. Then $K(A) \cong A$ in $\mathcal{D}^{b}(A$-Bimod $)$, implying an isomorphism
$\operatorname{RHom}_{A^{e}}\left(A, A^{e}\right) \rightarrow A[-2]$ in $\mathcal{D}^{b}(A$-Bimod $)$.
We recover that A is 2-Calabi-Yau in Ginzburg's sense.

The situation is new in the ADE types !

Passing to homology in 2-Kc-Calabi-Yau algebras, we get
(i) The A-bimodule $\mathrm{HK}^{2}\left(A, A^{e}\right)$ is isomorphic to the A-bimodule A.
(ii) $\mathrm{HK}^{1}\left(A, A^{e}\right)=0$.
(iii) The A-bimodule $\mathrm{HK}^{0}\left(A, A^{e}\right)$ is isomorphic to the A-bimodule $H_{2}(K(A))$.

Passing to homology in 2-Calabi-Yau algebras, we get
(i) The A-bimodule $\mathrm{HH}^{2}\left(A, A^{e}\right)$ is isomorphic to the A-bimodule A.
(ii) $\mathrm{HH}^{p}\left(A, A^{e}\right) \cong 0$ for $p \neq 2$.

Assume that A is Dynkin ADE. Then $H_{2}(K(A)) \neq 0$ because A is not Koszul. Therefore, since $\mathrm{HH}^{0}\left(A, A^{e}\right) \cong \mathrm{HK}^{0}\left(A, A^{e}\right), A$ is not 2-Calabi-Yau in Ginzburg's sense. However, A is 2-Kc-Calabi-Yau!

An n-generalisation

Definition

Let $A=T_{k}(V) /(R)$ be a quadratic k-algebra over a finite quiver \mathcal{Q}. Let $n \geq 0$ be an integer. We say that A is Koszul complex Calabi-Yau of dimension n (n-Kc-Calabi-Yau) if
(i) the Koszul bimodule complex $K(A)$ of A has length n, and
(ii) $\operatorname{RHom}_{A^{e}}\left(K(A), A^{e}\right) \cong K(A)[-n]$ in $\mathcal{D}^{b}(A$-Bimod).

Assume that A is Koszul. Then A is n-Kc-Calabi-Yau if and only if A is n-Calabi-Yau.

Conjecture

Let $A=T_{k}(V) /(R)$ be a quadratic k-algebra over a finite quiver \mathcal{Q}. If A is n-Calabi-Yau and n-Kc-Calabi-Yau, then A is Koszul (proved if $n \leq 3$).

Duality for n-Kc-Calabi-Yau algebras

Theorem

Let A be an n-Kc-Calabi-Yau algebra. Then for any A-bimodule M, the vector spaces $\mathrm{HK}^{p}(A, M)$ and $\mathrm{HK}_{n-p}(A, M)$ are isomorphic.

Sketch of proof : For any finitely generated projective A-bimodule P, we have a standard isomorphism

$$
M \otimes_{A^{e}} \operatorname{Hom}_{\mathcal{A}^{e}}\left(P, A^{e}\right) \cong \operatorname{Hom}_{A^{e}}(P, M) \text { in } \operatorname{Vect}_{F} \text { inducing }
$$

$$
M \stackrel{L}{\otimes}_{A^{e}} \operatorname{RHom}_{A^{e}}\left(K(A), A^{e}\right) \cong \operatorname{RHom}_{A^{e}}(K(A), M) \text { in } \mathcal{D}^{b}\left(\operatorname{Vect}_{\mathbb{F}}\right) .
$$

Combining with $\operatorname{RHom}_{A^{e}}\left(K(A), A^{e}\right) \cong K(A)[-n]$ in $\mathcal{D}^{b}(A$-Bimod), we conclude

$$
\operatorname{RHom}_{A^{e}}(K(A), M) \cong M \stackrel{L}{\otimes} A^{e} K(A)[-n] \text { in } \mathcal{D}^{b}\left(\operatorname{Vect}_{\mathbb{F}}\right)
$$

Towards an enriched duality isomorphism

Definition

Let A be an n-Kc-Calabi-Yau algebra. The image $c \in \mathrm{HK}_{n}(A)$ of the unit 1 of A by the duality isomorphism $\mathrm{HK}^{0}(A) \cong \mathrm{HK}_{n}(A)$ is called the fundamental class of the n-Kc-Calabi-Yau algebra A.

We want to define strong Kc-Calabi-Yau algebras.
For this we need to work with DG \tilde{A}-bimodules in A-Bimod, where \tilde{A} denotes the DG algebra $\operatorname{Hom}_{A^{e}}(K(A), A)$.

Following Yekutieli's book (Derived categories. Cambridge Studies in Advanced Mathematics 183, CUP, 2020), $\mathcal{C}\left(\tilde{A}, A\right.$-Bimod) $\left(\mathcal{C}\left(\tilde{A}\right.\right.$, Vect $\left.\left._{F}\right)\right)$ denotes the category of DG \tilde{A}-bimodules in A-Bimod (in Vect ${ }_{F}$), and the associated bounded derived categories are defined.

Duality for strong generalised Calabi-Yau algebras

Definition

Let A be an n-Kc-Calabi-Yau algebra. Then A is said to be strong $n-K c-C a l a b i-Y a u ~ i f ~ t h e ~ d e r i v e d ~ f u n c t o r ~ o f ~ t h e ~ e n d o f u n c t o r ~ H o m ~ A ~ A ~(~-~, ~ A ~ e ~) ~$ of $\mathcal{C}^{b}\left(\tilde{A}, A\right.$-Bimod) exists and if $\mathrm{RHom}_{A^{e}}\left(K(A), A^{e}\right) \cong K(A)[-n]$ in $\mathcal{D}^{b}(\tilde{A}, A$-Bimod $)$.

Theorem

Let A be a strong n-Kc-Calabi-Yau algebra with fundamental class c.
We assume that the derived functors of the functors $\operatorname{Hom}_{A^{e}}(-, A)$ and $A \otimes_{A^{e}}-\operatorname{from}^{b}\left(\tilde{A}, A\right.$-Bimod) to $\mathcal{C}^{b}\left(\tilde{A}, V^{\prime} \operatorname{Vect}_{\mathbb{F}}\right)$ exist.
Then

$$
c_{\overparen{K}}-: \mathrm{HK}^{\bullet}(A) \rightarrow \mathrm{HK}_{n-\bullet}(A)
$$

is an isomorphism of graded $\mathrm{HK}^{\bullet}(A)$-bimodules.

Dimension of the preprojective algebra

type of A	Coxeter number	$\operatorname{dim}(A)$
$\mathrm{A}_{n}, n \geq 1$	$h=n+1$	$\frac{n(n+1)(n+2)}{6}$
$\mathrm{D}_{n}, n \geq 4$	$h=2(n-1)$	$\frac{n(n-1)(2 n-1)}{3}$
E_{6}	$h=12$	156
E_{7}	$h=18$	399
E_{8}	$h=30$	1240

The formula $\operatorname{dim}(A)=\frac{h(h+1) n}{6}$ can be found in : A. Malkin, V. Ostrik, M. Vybornov, Quiver varieties and Lusztig's algebra, Adv. Math. 203 (2006) 514-536 (Corollary of Theorem 2.3). In this paper, the definition of the preprojective algebra is different from the standard definition we have used, but it is the same in ADE types.

All the non-Dynkin preprojective algebras are infinite-dimensional.

Dimension of the Koszul cohomology I

type of A	$\operatorname{dim} \mathrm{HK}^{0}(A)$	$\operatorname{dim} \operatorname{HK}^{1}(A)$	$\operatorname{dim} \mathrm{HK}^{2}(A)$	$\operatorname{dim} \mathrm{HH}^{2}(A)$
$\mathrm{A}_{n}, n \geq 3$	$m_{A}+1$	$n-m_{A}-1$	n	$n-m_{A}-1$
$\mathrm{D}_{n}, n \geq 4$	if n even	if char $\neq 2$	if char $\neq 2$	if char $\neq 2$
	$n+m_{D}$	$n-m_{D}-2$	n	0,1 if n even,odd
	if n odd	if char $=2$	if char $=2$	if char $=2$
	$n+m_{D}-1$	$n-2$	$n+m_{D}$	$n+m_{D}-2$

where $m_{A}=\left\lfloor\frac{n-1}{2}\right\rfloor, m_{D}=\left\lfloor\frac{n-2}{2}\right\rfloor$, and char denotes the characteristic of the field \mathbb{F}.

Observation : the natural inclusion $\mathrm{HH}^{2}(A) \hookrightarrow \mathrm{HK}^{2}(A)$ is not surjective. In other words, there is more information in $\mathrm{HK}^{2}(A)$ than in $\mathrm{HH}^{2}(A)$.

Dimension of the Koszul cohomology II

type	$\mathrm{HK}^{0}(A)$	$\mathrm{HK}^{1}(A)$	$\mathrm{HK}^{2}(A)$	$\mathrm{HH}^{2}(A)$
E_{6}	5	3 if char $\neq 2,3$	6 if char $\neq 2,3$	2 if char $\neq 2,3$
		4 if char $=2$	7 if char $=2$	5 if char $=2$
		4 if char $=3$	7 if char $=3$	3 if char $=3$
E_{7}	10	3 if char $\neq 2,3$	7 if char $\neq 2,3$	0 if char $\neq 2,3$
		6 if char $=2$	10 if char $=2$	9 if char $=2$
		4 if char $=3$	8 if char $=3$	1 if char $=3$
E_{8}	12	4 if char $\neq 2,3,5$	8 if char $\neq 2,3,5$	0 if char $\neq 2,3,5$
		8 if char $=2$	12 if char $=2$	12 if char $=2$
		6 if char $=3$	10 if char $=3$	2 if char $=3$
		5 if char $=5$	9 if char $=5$	1 if char $=5$

Observation : $\mathrm{HH}^{2}(A) \hookrightarrow \mathrm{HK}^{2}(A)$ is not surjective except in type E_{8} with char $=2$.

Dimension of the higher Koszul cohomology I

type	$\operatorname{HK}_{h i}^{0}(A)$	$\operatorname{HK}_{h i}^{1}(A)$	$\operatorname{HK}_{h i}^{2}(A)$
$n \geq 3$	if char $\neq 2$	if char $\neq 2$	n
	0,1 if n even, odd	0	
	if char $=2$	if char $=2$	
	$m_{A}+1$	$n-m_{A}-1$	
D_{n}	if char $\neq 2$	if char $\neq 2$	if char $\neq 2$
$n \geq 4$	$n, n-2$ if n even, odd	0	n
	if char $=2$	if char $=2$	if char $=2$
	$n+m_{D}, n+m_{D}-1$ if n even, odd	$n-2$	$n+m_{D}$

Remark. $\mathrm{HK}_{h i}^{\bullet}(A)$ is not isomorphic to $\mathrm{HK}^{\bullet}(A)$, except if char $=2$. Idem in types $\mathrm{E}_{6}, \mathrm{E}_{7}$ and E_{8}.

Dimension of the higher Koszul cohomology II

type	$\mathrm{HK}_{h i}^{0}(A)$	$\operatorname{HK}_{h i}^{1}(A)$	$\operatorname{HK}_{h i}^{2}(A)$
E_{6}	2 if char $\neq 2$	0 if char $\neq 2,3$	6 if char $\neq 2,3$
	5 if char $=2$	4 if char $=2$	7 if char $=2$
		1 if char $=3$	7 if char $=3$
E_{7}	7 if char $\neq 2$	0 if char $\neq 2$	7 if char $\neq 2$
	10 if char $=2$	6 if char $=2$	10 if char $=2$
E_{8}	8 if char $\neq 2$	0 if char $\neq 2,3$	8 if char $\neq 2$
	12 if char $=2$	8 if char $=2$	12 if char $=2$
		2 if char $=3$	

From these results, we have proved that the spaces $\mathrm{HK}_{h i}^{0}(A), \mathrm{HK}_{h i}^{1}(A)$ and $\mathrm{HK}_{h i}^{2}(A)$ form a minimal complete list of cohomological invariants for all the ADE preprojective algebras.

The spaces W_{0}, W_{1} and W_{2}

Let A be the preprojective algebra of type A_{3} over a field \mathbb{F}, that is, the \mathbb{F}-algebra defined by the quiver

subject to the relations

$$
\sigma_{0}=-a_{0}^{*} a_{0}, \quad \sigma_{1}=a_{0} a_{0}^{*}-a_{1}^{*} a_{1}, \quad \sigma_{2}=a_{1} a_{1}^{*}
$$

The algebra A has dimension 10 and a basis of A over \mathbb{F} is given by the elements e_{i} for $0 \leqslant i \leqslant 2, a_{i}$ and a_{i}^{*} for $0 \leqslant i \leqslant 1, a_{1} a_{0}, a_{1}^{*} a_{1}$ and $a_{0}^{*} a_{1}^{*}$. We then define $W_{0}=\mathbb{F} \bar{Q}_{0}=\mathbb{F}\left\langle e_{0}, e_{1}, e_{2}\right\rangle=k$, $W_{1}=\mathbb{F} \bar{Q}_{1}=\mathbb{F}\left\langle a_{0}, a_{1}, a_{0}^{*}, a_{1}^{*}\right\rangle=V, W_{2}=\mathbb{F}\left\langle\sigma_{0}, \sigma_{1}, \sigma_{2}\right\rangle=R \subseteq \mathbb{F} \bar{Q}_{2}$.

Proving that $W_{3}=0$

Now define $W_{3}=\left(V \otimes_{k} R\right) \cap\left(R \otimes_{k} V\right)$, viewed inside $\mathbb{F} \bar{Q}_{3}$. An element u in W_{3} can therefore be written as a path in $\mathbb{F} \bar{Q}_{3}$ in two ways :

$$
u=\sum_{i=0}^{1}\left(\lambda_{i} a_{i} \sigma_{i}+\lambda_{i}^{*} a_{i}^{*} \sigma_{i+1}\right)=\sum_{i=0}^{1}\left(\mu_{i} \sigma_{i+1} a_{i}+\mu_{i}^{*} \sigma_{i} a_{i}^{*}\right)
$$

with $\lambda_{i}, \lambda_{i}^{*}, \mu_{i}, \mu_{i}^{*}$ in \mathbb{F}. Then, in $\mathbb{F} \bar{Q}_{3}$, we have

$$
\begin{aligned}
& \left(-\lambda_{0}-\mu_{0}\right) a_{0} a_{0}^{*} a_{0}+\left(-\lambda_{1}-\mu_{1}\right) a_{1} a_{1}^{*} a_{1}+\left(\lambda_{0}^{*}+\mu_{0}^{*}\right) a_{0}^{*} a_{0} a_{0}^{*} \\
& +\left(\lambda_{1}^{*}+\mu_{1}^{*}\right) a_{1}^{*} a_{1} a_{1}^{*}+\lambda_{1} a_{1} a_{0} a_{0}^{*}-\lambda_{0}^{*} a_{0}^{*} a_{1}^{*} a_{1}+\mu_{0} a_{1}^{*} a_{1} a_{0}-\mu_{1}^{*} a_{0} a_{0}^{*} a_{1}^{*}=0
\end{aligned}
$$

so that all the coefficients $\lambda_{i}, \lambda_{i}^{*}, \mu_{i}$ and μ_{i}^{*} must be zero, hence $u=0$.
This fact holds for any preprojective algebra not of type A_{1} and A_{2}.

A is not Koszul

Since $W_{3}=0$, the Koszul bimodule complex $K(A)$ is

$$
0 \longrightarrow A \otimes_{k} R \otimes_{k} A \xrightarrow{d_{2}} A \otimes_{k} V \otimes_{k} A \xrightarrow{d_{1}} A \otimes_{k} A \rightarrow 0
$$

with $d_{1}\left(a \otimes_{k} x \otimes_{k} a^{\prime}\right)=a x \otimes_{k} a^{\prime}-a \otimes_{k} x a^{\prime}$ and

$$
d_{2}\left(a \otimes_{k} \sum_{i=1}^{n} \lambda_{i} x_{i} y_{i} \otimes_{k} a^{\prime}\right)=\sum_{i=1}^{n} \lambda_{i}\left(a x_{i} \otimes_{k} y_{i} \otimes_{k} a^{\prime}+a \otimes_{k} x_{i} \otimes_{k} y_{i} a^{\prime}\right)
$$

From $\sigma_{1}=a_{0} a_{0}^{*}-a_{1}^{*} a_{1}$, one has $d_{2}\left(a \otimes_{k} \sigma_{1} \otimes_{k} a^{\prime}\right)=$ $a a_{0} \otimes_{k} a_{0}^{*} \otimes_{k} a^{\prime}+a \otimes_{k} a_{0} \otimes_{k} a_{0}^{*} a^{\prime}-a a_{1}^{*} \otimes_{k} a_{1} \otimes_{k} a^{\prime}-a \otimes_{k} a_{1}^{*} \otimes_{k} a_{1} a^{\prime}$ thus $d_{2}\left(a_{1}^{*} a_{1} \otimes \sigma_{1} \otimes a_{1}^{*} a_{1}\right)=0$. So $\operatorname{ker}\left(d_{2}\right) \neq 0$.
Therefore A is not Koszul.
This fact holds for any ADE preprojective algebra not of type A_{1} and A_{2}. All the non-Dynkin preprojective algebras are Koszul.

Computing the Koszul cohomology I

The Koszul cohomology of A is the homology of the complex $\operatorname{Hom}_{A^{e}}(K(A), A)$, namely the complex

$$
0 \rightarrow \operatorname{Hom}_{k^{e}}(k, A) \xrightarrow{b_{K}^{1}} \operatorname{Hom}_{k^{e}}(V, A) \xrightarrow{b_{K}^{2}} \operatorname{Hom}_{k^{e}}(R, A) \rightarrow 0
$$

Note that $\operatorname{Hom}_{k^{e}}(k, A) \cong \bigoplus_{i=0}^{2} e_{i} A e_{i}$ has basis $e_{0}, e_{1}, e_{2}, a_{1}^{*} a_{1}$, that f in $\operatorname{Hom}_{k} e(V, A)$ is defined by $f\left(a_{i}\right)=\lambda_{i} a_{i}$ and $f\left(a_{i}^{*}\right)=\lambda_{i}^{*} a_{i}^{*}$ for $i=0,1$ with $\lambda_{i}, \lambda_{i}^{*}$ in \mathbb{F}, and that g in $\operatorname{Hom}_{k^{e}}(R, A)$ is defined by $g\left(\sigma_{i}\right)=\alpha_{i} e_{i}$ for $i=0,2$ and $g\left(\sigma_{1}\right)=\alpha_{1} e_{1}+\beta a_{1}^{*} a_{1}$ for some scalars α_{i} and β.

Then $b_{K}^{1}\left(\sum_{i=0}^{2} u_{i} e_{i}+v a_{1}^{*} a_{1}\right)$ is defined by

$$
a_{i} \mapsto\left(u_{i+1}-u_{i}\right) a_{i} \text { and } a_{i}^{*} \mapsto\left(u_{i}-u_{i+1}\right) a_{i}^{*} \text { for } i=0,1
$$

and $b_{K}^{2}(f)$ is defined by

$$
\sigma_{0} \mapsto 0, \sigma_{1} \mapsto\left(\lambda_{0}+\lambda_{0}^{*}-\lambda_{1}-\lambda_{1}^{*}\right) a_{1}^{*} a_{1} \text { and } \sigma_{2} \mapsto 0
$$

Computing the Koszul cohomology II

It is then easy to see that $\operatorname{HK}^{0}(A)=\mathbb{F}\left\langle 1, z_{1}=a_{1}^{*} a_{1}\right\rangle$, that $\operatorname{HK}^{1}(A)=\mathbb{F}\left\langle\bar{\zeta}_{0}\right\rangle$ with $\zeta_{0} \in \operatorname{Hom}_{k^{e}}(V, A)$ defined by $\zeta_{0}\left(a_{i}\right)=a_{i}$ and $\zeta_{0}\left(a_{i}^{*}\right)=0$, and that $\operatorname{HK}^{2}(A)=\mathbb{F}\left\langle\bar{h}_{0}, \bar{h}_{1}, \bar{h}_{2}\right\rangle$ with $h_{i} \in \operatorname{Hom}_{k^{e}}(R, A)$ defined by $h_{i}\left(\sigma_{j}\right)=\delta_{i j} e_{i}$.

The Koszul cup products can be easily found from the defining formula. It follows that $1 \underset{K}{\smile} x=x \breve{K}^{\smile} 1=x$ for any $x \in \operatorname{HK}^{\bullet}(A)$ and that all other cup products are 0 in $\mathrm{HK}^{\bullet}(A)$. For instance, $z_{1} \breve{K}^{\smile} h_{1}: R \rightarrow A$ is defined by

$$
z_{1} \underset{K}{\smile} h_{1}\left(\sigma_{0}\right)=0, \quad z_{1} \smile h_{1}\left(\sigma_{1}\right)=z_{1}, \quad z_{1} \smile h_{K}\left(\sigma_{2}\right)=0
$$

then $z_{1} \underset{K}{\smile} h_{1}=b_{K}^{2}(f)$ where f sends a_{0} to a_{0} and all other arrows to 0 .

Computing the fundamental class

The Koszul homology of A is the homology of the complex $A \otimes_{A^{e}} K(A)$, namely the complex

$$
0 \rightarrow A \otimes_{k^{e}} R \xrightarrow{b_{2}^{K}} A \otimes_{k^{e}} V \xrightarrow{b_{1}^{K}} A \otimes_{k^{e}} k \rightarrow 0 .
$$

From $\sigma_{0}=-a_{0}^{*} a_{0}$, one has $b_{2}^{K}\left(a \otimes_{k^{e}} \sigma_{0}\right)=-a a_{0}^{*} \otimes_{k^{e}} a_{0}-a_{0} a \otimes_{k^{e}} a_{0}^{*}$. In particular, $b_{2}^{K}\left(e_{0} \otimes \sigma_{0}\right)=-a_{0}^{*} \otimes a_{0}-a_{0} \otimes a_{0}^{*}$. Similarly, from $\sigma_{1}=a_{0} a_{0}^{*}-a_{1}^{*} a_{1}$ and $\sigma_{2}=a_{1} a_{1}^{*}$, one has
$b_{2}^{K}\left(e_{1} \otimes \sigma_{1}\right)=a_{0} \otimes a_{0}^{*}+a_{0}^{*} \otimes a_{0}-a_{1}^{*} \otimes a_{1}-a_{1} \otimes a_{1}^{*}$, $b_{2}^{K}\left(e_{2} \otimes \sigma_{2}\right)=a_{1} \otimes a_{1}^{*}+a_{1}^{*} \otimes a_{1}$.

So $\omega_{0}=\sum_{i=0}^{2} e_{i} \otimes \sigma_{i}$ is a Koszul 2-cycle. The non-vanishing class $\bar{\omega}_{0} \in \mathrm{HK}_{2}(A)$ is called the fundamental class.

A Poincaré Van den Bergh duality

There is a duality isomorphism $\theta_{A}: \mathrm{HK}^{\bullet}(A) \rightarrow \mathrm{HK}_{2-\bullet}(A)$ given by $\bar{f} \mapsto \bar{\omega}_{0} \overparen{K}$. Explicitly in our example,

- $\theta_{A}(1)=\bar{\omega}_{0}$ and $\theta_{A}\left(z_{1}\right)=\overline{z_{1} \otimes \sigma_{1}}$ form a basis of $\mathrm{HK}_{2}(A)$;
- $\theta_{A}\left(\bar{\zeta}_{0}\right)=\overline{a_{0} \otimes a_{0}^{*}+a_{1} \otimes a_{1}^{*}}$ forms a basis of $\operatorname{HK}_{1}(A)$;
- $\theta_{A}\left(\bar{h}_{i}\right)=\overline{e_{i} \otimes e_{i}}$ for $0 \leqslant i \leqslant 2$ form a basis of $\mathrm{HK}_{0}(A)$.

Moreover, $\mathrm{HK}^{\bullet}(A)$ and $\mathrm{HK}_{\bullet}(A)$ are graded $\mathrm{HK}^{\bullet}(A)$-bimodules for cup and cap actions respectively. Then θ_{A} is an isomorphism of graded $\mathrm{HK}^{\bullet}(A)$-bimodules. Therefore, the cap actions on $\mathrm{HK}_{\bullet}(A)$ all vanish except $1 \underset{\kappa}{\overparen{K}} x=x=x \overparen{\kappa} 1$ for all $x \in \operatorname{HK} \bullet(A)$.

This duality isomorphism holds for any preprojective algebra not of type A_{1} and A_{2}, with coefficients in any bimodule M.

