Koszul calculus for N-homogeneous algebras

Roland Berger

Université de Saint-Etienne
Institut Camille Jordan
UMR 5208

Koszul calculus for N-homogeneous algebras

(1) Koszul complex for N-homogeneous algebras
(2) Koszul products
(3) Koszul calculus
4) Fundamental formulas of Koszul calculus
(5) Higher Koszul calculus

A is any N-homogeneous algebra

Fix a vector space V over a field k and an integer $N \geq 2$. Fix a subspace R of $V^{\otimes N}$.

A is any N-homogeneous algebra

Fix a vector space V over a field k and an integer $N \geq 2$. Fix a subspace R of $V^{\otimes N}$.

The graded associative algebra $A=T(V) /(R)$ is called an N-homogeneous algebra. If $N=2, A$ is a quadratic algebra.

A is any N-homogeneous algebra

Fix a vector space V over a field k and an integer $N \geq 2$. Fix a subspace R of $V^{\otimes N}$.

The graded associative algebra $A=T(V) /(R)$ is called an N-homogeneous algebra. If $N=2, A$ is a quadratic algebra.

Koszul calculus for quadratic algebras was defined and studied in
R. Berger, T. Lambre, A. Solotar, Koszul calculus, Glasg. Math. J. 2018.

A is any N-homogeneous algebra

Fix a vector space V over a field k and an integer $N \geq 2$. Fix a subspace R of $V^{\otimes N}$.

The graded associative algebra $A=T(V) /(R)$ is called an N-homogeneous algebra. If $N=2, A$ is a quadratic algebra.

Koszul calculus for quadratic algebras was defined and studied in
R. Berger, T. Lambre, A. Solotar, Koszul calculus, Glasg. Math. J. 2018.

Aim : construct a Koszul calculus for the N-homogeneous algebra A.

A is any N -homogeneous algebra

Fix a vector space V over a field k and an integer $N \geq 2$. Fix a subspace R of $V^{\otimes N}$.

The graded associative algebra $A=T(V) /(R)$ is called an N-homogeneous algebra. If $N=2, A$ is a quadratic algebra.

Koszul calculus for quadratic algebras was defined and studied in
R. Berger, T. Lambre, A. Solotar, Koszul calculus, Glasg. Math. J. 2018.

Aim : construct a Koszul calculus for the N-homogeneous algebra A.
R. Berger, Koszul calculus for N-homogeneous algebras, J. Algebra 2019.

Constructing the bimodule Koszul complex of A

For any $p \geq 0, W_{p}$ denotes the subspace of $V^{\otimes p}$ defined by

$$
W_{p}=\bigcap_{i+N+j=p} V^{\otimes i} \otimes R \otimes V^{\otimes j}
$$

Constructing the bimodule Koszul complex of A

For any $p \geq 0, W_{p}$ denotes the subspace of $V^{\otimes p}$ defined by

$$
W_{p}=\bigcap_{i+N+j=p} V^{\otimes i} \otimes R \otimes V^{\otimes j}
$$

When $N=2$ and $A=S(V), W_{p} \cong \Lambda^{p} V$.

Constructing the bimodule Koszul complex of A

For any $p \geq 0, W_{p}$ denotes the subspace of $V^{\otimes p}$ defined by

$$
W_{p}=\bigcap_{i+N+j=p} V^{\otimes i} \otimes R \otimes V^{\otimes j}
$$

When $N=2$ and $A=S(V), W_{p} \cong \Lambda^{p} V$.

For any N, one has $W_{p}=V^{\otimes p}$ if $0 \leq p<N$ and $W_{N}=R$.

Constructing the bimodule Koszul complex of A

For any $p \geq 0, W_{p}$ denotes the subspace of $V^{\otimes p}$ defined by

$$
W_{p}=\bigcap_{i+N+j=p} V^{\otimes i} \otimes R \otimes V^{\otimes j}
$$

When $N=2$ and $A=S(V), W_{p} \cong \bigwedge^{p} V$.

For any N, one has $W_{p}=V^{\otimes p}$ if $0 \leq p<N$ and $W_{N}=R$.
Only $W_{0}=k, W_{1}=V, W_{N}=R, W_{N+1}=(R \otimes V) \cap(V \otimes R), \ldots$ are of interest in the construction. We set

Constructing the bimodule Koszul complex of A

For any $p \geq 0, W_{p}$ denotes the subspace of $V^{\otimes p}$ defined by

$$
W_{p}=\bigcap_{i+N+j=p} V^{\otimes i} \otimes R \otimes V^{\otimes j}
$$

When $N=2$ and $A=S(V), W_{p} \cong \bigwedge^{p} V$.

For any N, one has $W_{p}=V^{\otimes p}$ if $0 \leq p<N$ and $W_{N}=R$.
Only $W_{0}=k, W_{1}=V, W_{N}=R, W_{N+1}=(R \otimes V) \cap(V \otimes R), \ldots$ are of interest in the construction. We set
$\nu\left(2 p^{\prime}\right)=p^{\prime} N$ and $\nu\left(2 p^{\prime}+1\right)=p^{\prime} N+1$.

The bimodule Koszul complex $K(A)$

$d: A \otimes W_{\nu(p)} \otimes A \rightarrow A \otimes W_{\nu(p-1)} \otimes A$ is defined by

The bimodule Koszul complex $K(A)$

$d: A \otimes W_{\nu(p)} \otimes A \rightarrow A \otimes W_{\nu(p-1)} \otimes A$ is defined by
If $p=2 p^{\prime}+1$, then
$d\left(a \otimes x_{1} \ldots x_{p^{\prime} N+1} \otimes a^{\prime}\right)=a x_{1} \otimes x_{2} \ldots x_{p^{\prime} N+1} \otimes a^{\prime}-a \otimes x_{1} \ldots x_{p^{\prime} N} \otimes x_{p^{\prime} N+1} a^{\prime}$.

The bimodule Koszul complex $K(A)$

$d: A \otimes W_{\nu(p)} \otimes A \rightarrow A \otimes W_{\nu(p-1)} \otimes A$ is defined by
If $p=2 p^{\prime}+1$, then
$d\left(a \otimes x_{1} \ldots x_{p^{\prime} N+1} \otimes a^{\prime}\right)=a x_{1} \otimes x_{2} \ldots x_{p^{\prime} N+1} \otimes a^{\prime}-a \otimes x_{1} \ldots x_{p^{\prime} N} \otimes x_{p^{\prime} N+1} a^{\prime}$.

If $p=2 p^{\prime}$, then
$d\left(a \otimes x_{1} \ldots x_{p^{\prime} N} \otimes a^{\prime}\right)=$
$\sum_{i=0}^{i=N-1} a x_{1} \ldots x_{i} \otimes x_{i+1} \ldots x_{i+p^{\prime} N-N+1} \otimes x_{i+p^{\prime} N-N+2} \ldots x_{p^{\prime} N} a^{\prime}$.

Defining $H K_{p}(A, M)$ for any A-bimodule M

The complex $\left(M \otimes W_{\nu(\bullet)}, b_{K}\right)$ is defined as follows :

$$
b_{K}: M \otimes W_{\nu(p)} \rightarrow M \otimes W_{\nu(p-1)}
$$

Defining $H K_{p}(A, M)$ for any A-bimodule M

The complex $\left(M \otimes W_{\nu(\bullet)}, b_{K}\right)$ is defined as follows :

$$
b_{K}: M \otimes W_{\nu(p)} \rightarrow M \otimes W_{\nu(p-1)}
$$

if $p=2 p^{\prime}+1$,
$b_{K}\left(m \otimes x_{1} \ldots x_{p^{\prime} N+1}\right)=m x_{1} \otimes x_{2} \ldots x_{p^{\prime} N+1}-x_{p^{\prime} N+1} m \otimes x_{1} \ldots x_{p^{\prime} N}$,

Defining $H K_{p}(A, M)$ for any A-bimodule M

The complex $\left(M \otimes W_{\nu(\bullet)}, b_{K}\right)$ is defined as follows :

$$
b_{K}: M \otimes W_{\nu(p)} \rightarrow M \otimes W_{\nu(p-1)}
$$

if $p=2 p^{\prime}+1$,
$b_{K}\left(m \otimes x_{1} \ldots x_{p^{\prime} N+1}\right)=m x_{1} \otimes x_{2} \ldots x_{p^{\prime} N+1}-x_{p^{\prime} N+1} m \otimes x_{1} \ldots x_{p^{\prime} N}$,
if $p=2 p^{\prime}$,
$b_{k}\left(m \otimes x_{1} \ldots x_{p^{\prime} N}\right)=$

$$
\sum_{i=0}^{i=N-1} x_{i+p^{\prime} N-N+2} \ldots x_{p^{\prime} N} m x_{1} \ldots x_{i} \otimes x_{i+1} \ldots x_{i+p^{\prime} N-N+1} .
$$

Defining $H K^{P}(A, M)$

The complex $\left(\operatorname{Hom}_{k}\left(W_{\nu(\bullet)}, M\right), b_{K}\right)$ is defined as follows :

$$
b_{K}: \operatorname{Hom}_{k}\left(W_{\nu(p)}, M\right) \rightarrow \operatorname{Hom}_{k}\left(W_{\nu(p+1)}, M\right)
$$

Defining $H K^{P}(A, M)$

The complex $\left(\operatorname{Hom}_{k}\left(W_{\nu(\bullet)}, M\right), b_{K}\right)$ is defined as follows :

$$
b_{K}: \operatorname{Hom}_{k}\left(W_{\nu(p)}, M\right) \rightarrow \operatorname{Hom}_{k}\left(W_{\nu(p+1)}, M\right)
$$

if $p=2 p^{\prime}$,

$$
b_{K}(f)\left(x_{1} \ldots x_{p^{\prime} N+1}\right)=f\left(x_{1} \ldots x_{p^{\prime} N}\right) x_{p^{\prime} N+1}-x_{1} f\left(x_{2} \ldots x_{p^{\prime} N+1}\right),
$$

Defining $H K^{P}(A, M)$

The complex $\left(\operatorname{Hom}_{k}\left(W_{\nu(\bullet)}, M\right), b_{K}\right)$ is defined as follows :

$$
b_{K}: \operatorname{Hom}_{k}\left(W_{\nu(p)}, M\right) \rightarrow \operatorname{Hom}_{k}\left(W_{\nu(p+1)}, M\right)
$$

$$
\text { if } p=2 p^{\prime} \text {, }
$$

$$
b_{K}(f)\left(x_{1} \ldots x_{p^{\prime} N+1}\right)=f\left(x_{1} \ldots x_{p^{\prime} N}\right) x_{p^{\prime} N+1}-x_{1} f\left(x_{2} \ldots x_{p^{\prime} N+1}\right)
$$

if $p=2 p^{\prime}+1$,
$b_{k}(f)\left(x_{1} \ldots x_{p^{\prime} N+N}\right)=$

$$
\sum_{i=0}^{i=N-1} x_{1} \ldots x_{i} f\left(x_{i+1} \ldots x_{i+p^{\prime} N+1}\right) x_{i+p^{\prime} N+2} \ldots x_{p^{\prime} N+N} .
$$

Koszul calculus for N-homogeneous algebras

(1) Koszul complex for N-homogeneous algebras
(2) Koszul products
(3) Koszul calculus
4) Fundamental formulas of Koszul calculus
(5) Higher Koszul calculus

Definition of the Koszul cup product

For $f: W_{\nu(p)} \rightarrow P$ and $g: W_{\nu(q)} \rightarrow Q$, define

$$
f_{K} g: W_{\nu(p+q)} \rightarrow P \otimes_{A} Q
$$

Definition of the Koszul cup product

For $f: W_{\nu(p)} \rightarrow P$ and $g: W_{\nu(q)} \rightarrow Q$, define

$$
f_{K} g: W_{\nu(p+q)} \rightarrow P \otimes_{A} Q
$$

if p or q is even, then $\nu(p+q)=\nu(p)+\nu(q)$ and

$$
\left(f f_{K}^{\smile} g\right)\left(x_{1} \ldots x_{\nu(p+q)}\right)=f\left(x_{1} \ldots x_{\nu(p)}\right) \otimes_{A} g\left(x_{\nu(p)+1} \ldots x_{\nu(p+q)}\right),
$$

Definition of the Koszul cup product

For $f: W_{\nu(p)} \rightarrow P$ and $g: W_{\nu(q)} \rightarrow Q$, define

$$
f_{K} g: W_{\nu(p+q)} \rightarrow P \otimes_{A} Q
$$

if p or q is even, then $\nu(p+q)=\nu(p)+\nu(q)$ and

$$
\left(f \breve{K}^{\smile} g\right)\left(x_{1} \ldots x_{\nu(p+q)}\right)=f\left(x_{1} \ldots x_{\nu(p)}\right) \otimes_{A} g\left(x_{\nu(p)+1} \ldots x_{\nu(p+q)}\right)
$$

if $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$, then $\nu(p)=p^{\prime} N+1, \nu(q)=q^{\prime} N+1$, $\nu(p+q)=p^{\prime} N+q^{\prime} N+N=\nu(p)+\nu(q)+N-2$ and
$\left(f_{K}^{\smile} g\right)\left(x_{1} \ldots x_{p^{\prime} N+q^{\prime} N+N}\right)=$
$-\sum_{0 \leq i+j \leq N-2} x_{1} \ldots x_{i} f\left(x_{i+1} \ldots x_{i+p^{\prime} N+1}\right) x_{i+p^{\prime} N+2} \ldots x_{p^{\prime} N+N-j-1}$
$\otimes_{A} g\left(x_{p^{\prime} N+N-j} \ldots x_{p^{\prime} N+q^{\prime} N+N-j}\right) x_{p^{\prime}} N+q^{\prime} N+N-j+1 \ldots x_{p^{\prime} N+q^{\prime} N+N}$.

Definition of the Koszul cap products

For $f: W_{\nu(p)} \rightarrow P$ and $z=m \otimes x_{1} \ldots x_{\nu(q)} \in M \otimes W_{\nu(q)}$ with $q \geq p$, define

$$
\begin{aligned}
& f \overparen{K} \\
& z \in\left(P \otimes_{A} M\right) \otimes W_{\nu(q-p)} \\
& z \in\left(M \otimes_{A} P\right) \otimes W_{\nu(q-p)}
\end{aligned}
$$

as follows.

Definition of the Koszul cap products

For $f: W_{\nu(p)} \rightarrow P$ and $z=m \otimes x_{1} \ldots x_{\nu(q)} \in M \otimes W_{\nu(q)}$ with $q \geq p$, define

$$
\begin{aligned}
& f \overparen{K} \\
& z \overparen{K} \\
& z \in\left(P \otimes_{A} M\right) \otimes W_{\nu(q-p)} \\
&
\end{aligned}
$$

as follows.
If p even or q odd, then $\nu(q)=\nu(q-p)+\nu(p)$ and

$$
f \overparen{K}{ }_{\overparen{K}} z=\left(f\left(x_{\nu(q-p)+1} \ldots x_{\nu(q)}\right) \otimes_{A} m\right) \otimes x_{1} \ldots x_{\nu(q-p)}
$$

Definition of the Koszul cap products

For $f: W_{\nu(p)} \rightarrow P$ and $z=m \otimes x_{1} \ldots x_{\nu(q)} \in M \otimes W_{\nu(q)}$ with $q \geq p$, define

$$
\begin{aligned}
& f \overparen{K} \\
& z \overparen{K} \\
& z \in\left(P \otimes_{A} M\right) \otimes W_{\nu(q-p)} \\
&
\end{aligned}
$$

as follows.
If p even or q odd, then $\nu(q)=\nu(q-p)+\nu(p)$ and

$$
\begin{aligned}
& f \overparen{K} \\
& z=\left(f\left(x_{\nu(q-p)+1} \ldots x_{\nu(q)}\right) \otimes_{A} m\right) \otimes x_{1} \ldots x_{\nu(q-p)} \\
& z_{K} f=(-1)^{p q}\left(m \otimes_{A} f\left(x_{1} \ldots x_{\nu(p)}\right)\right) \otimes x_{\nu(p)+1} \ldots x_{\nu(q)}
\end{aligned}
$$

Definition of the Koszul cap products

If $p=2 p^{\prime}+1$ and $q=2 q^{\prime}$, then $\nu(q)=\nu(q-p)+\nu(p)-N+2$ and

$$
\left(f \overparen{K}{ }_{\overparen{K}} z\right)=-\sum_{0 \leq i+j \leq N-2}
$$

$$
\begin{aligned}
& \left(x_{q^{\prime} N-p^{\prime} N-N+i+2} \ldots x_{q^{\prime} N-p^{\prime} N-j-1} f\left(x_{q^{\prime} N-p^{\prime} N-j} \ldots x_{q^{\prime} N-j}\right)\right. \\
& \left.\otimes_{A} x_{q^{\prime} N-j+1} \ldots x_{q^{\prime} N} m x_{1} \ldots x_{i}\right) \otimes x_{i+1} \ldots x_{i+q^{\prime} N-p^{\prime} N-N+1}
\end{aligned}
$$

Definition of the Koszul cap products

If $p=2 p^{\prime}+1$ and $q=2 q^{\prime}$, then $\nu(q)=\nu(q-p)+\nu(p)-N+2$ and

$$
\begin{aligned}
(f \overparen{K} z) & =-\sum_{0 \leq i+j \leq N-2} \\
& \left(x_{q^{\prime} N-p^{\prime} N-N+i+2} \ldots x_{q^{\prime} N-p^{\prime} N-j-1} f\left(x_{q^{\prime} N-p^{\prime} N-j} \ldots x_{q^{\prime} N-j}\right)\right. \\
& \left.\otimes_{A} x_{q^{\prime} N-j+1} \ldots x_{q^{\prime} N} m x_{1} \ldots x_{i}\right) \otimes x_{i+1} \ldots x_{i+q^{\prime} N-p^{\prime} N-N+1}
\end{aligned}
$$

$$
(z \overparen{K} f)=\sum_{0 \leq i+j \leq N-2}
$$

$$
\begin{gathered}
\left(x_{q^{\prime} N-j+1} \ldots x_{q^{\prime} N} m x_{1} \ldots x_{i} \otimes_{A} f\left(x_{i+1} \ldots x_{i+p^{\prime} N+1}\right)\right. \\
\left.x_{i+p^{\prime} N+2} \ldots x_{p^{\prime} N+N-j-1}\right) \otimes x_{p^{\prime} N+N-j} \ldots x_{q^{\prime} N-j} .
\end{gathered}
$$

Koszul calculus for N-homogeneous algebras

(1) Koszul complex for N -homogeneous algebras
(2) Koszul products
(3) Koszul calculus
(4) Fundamental formulas of Koszul calculus
(5) Higher Koszul calculus

Everything goes well!

Let $A=T(V) /(R)$ be an N-homogeneous algebra. Let P and Q be A-bimodules.

Everything goes well!

Let $A=T(V) /(R)$ be an N-homogeneous algebra. Let P and Q be A-bimodules.

For any Koszul p-cochain f with coefficients in P and Koszul q-cochain g with coefficients in Q, one has

Everything goes well!

Let $A=T(V) /(R)$ be an N-homogeneous algebra. Let P and Q be A-bimodules.

For any Koszul p-cochain f with coefficients in P and Koszul q-cochain g with coefficients in Q, one has

$$
b_{K}(f \underbrace{}_{K} g)=b_{K}(f) \breve{K}^{\smile} g+(-1)^{p} f \breve{K}^{\smile} b_{K}(g)
$$

Everything goes well!

Let $A=T(V) /(R)$ be an N-homogeneous algebra. Let P and Q be A-bimodules.

For any Koszul p-cochain f with coefficients in P and Koszul q-cochain g with coefficients in Q, one has

$$
b_{K}\left(f_{\breve{K}} g\right)=b_{K}(f) \breve{K} g+(-1)^{p} f \breve{\zeta}_{K} b_{K}(g) .
$$

Thus we obtain a Koszul cup product on Koszul cohomology classes

Everything goes well!

Let $A=T(V) /(R)$ be an N-homogeneous algebra. Let P and Q be A-bimodules.

For any Koszul p-cochain f with coefficients in P and Koszul q-cochain g with coefficients in Q, one has

$$
b_{K}\left(f_{K}^{\smile} g\right)=b_{K}(f) \breve{K}^{\smile} g+(-1)^{p} f \breve{K}^{\smile} b_{K}(g)
$$

Thus we obtain a Koszul cup product on Koszul cohomology classes

$$
\smile_{K}: H K^{p}(A, P) \otimes H K^{q}(A, Q) \rightarrow H K^{p+q}\left(A, P \otimes_{A} Q\right)
$$

Everything goes well!

Let $A=T(V) /(R)$ be an N-homogeneous algebra. Let P and Q be A-bimodules.

For any Koszul p-cochain f with coefficients in P and Koszul q-cochain g with coefficients in Q, one has

$$
b_{K}\left(f \breve{K}^{\smile} g\right)=b_{K}(f) \breve{K}^{\smile} g+(-1)^{p} f \breve{K}^{\smile} b_{K}(g)
$$

Thus we obtain a Koszul cup product on Koszul cohomology classes

$$
\smile_{K}: H K^{p}(A, P) \otimes H K^{q}(A, Q) \rightarrow H K^{p+q}\left(A, P \otimes_{A} Q\right)
$$

Claim : this product is associative. One can assume $N>2$.

Associativity on classes : a scheme of proof

For Koszul cochains f, g and h, we define their associator

Associativity on classes : a scheme of proof

For Koszul cochains f, g and h, we define their associator

$$
\operatorname{as}(f, g, h)=\left(f_{\breve{K}} g\right)_{\breve{K}} h-f_{\breve{K}}\left(g_{\breve{K}} h\right) .
$$

Associativity on classes : a scheme of proof

For Koszul cochains f, g and h, we define their associator

$$
\operatorname{as}(f, g, h)=\left(f \breve{K}^{\smile} g\right)_{K} h-f \breve{K}^{\smile}\left(g_{K} h\right) .
$$

1) If $\nu(p+q+r)=\nu(p)+\nu(q)+\nu(r)$, then $\operatorname{as}(f, g, h)=0$.

Associativity on classes : a scheme of proof

For Koszul cochains f, g and h, we define their associator

$$
\operatorname{as}(f, g, h)=\left(f \breve{K}^{\smile} g\right)_{K} h-f_{K}\left(g_{K} h\right) .
$$

1) If $\nu(p+q+r)=\nu(p)+\nu(q)+\nu(r)$, then $\operatorname{as}(f, g, h)=0$.
2) $p=2 p^{\prime}, q=2 q^{\prime}+1, r=2 r^{\prime}+1: \operatorname{as}(f, g, h)=0$ if f is a cocycle.

Associativity on classes : a scheme of proof

For Koszul cochains f, g and h, we define their associator

$$
\operatorname{as}(f, g, h)=\left(f{\underset{K}{ }}_{\smile} g\right)_{K} h-f \breve{K}^{\smile}\left(g_{K} h\right) .
$$

1) If $\nu(p+q+r)=\nu(p)+\nu(q)+\nu(r)$, then $a s(f, g, h)=0$.
2) $p=2 p^{\prime}, q=2 q^{\prime}+1, r=2 r^{\prime}+1:$ as $(f, g, h)=0$ if f is a cocycle.
3) $p=2 p^{\prime}+1, q=2 q^{\prime}, r=2 r^{\prime}+1:$ as $(f, g, h)=0$ if g is a cocycle.

Associativity on classes : a scheme of proof

For Koszul cochains f, g and h, we define their associator

$$
\operatorname{as}(f, g, h)=\left(f \breve{K}^{\smile} g\right)_{K} h-f \breve{K}^{\smile}\left(g_{K} h\right) .
$$

1) If $\nu(p+q+r)=\nu(p)+\nu(q)+\nu(r)$, then $a s(f, g, h)=0$.
2) $p=2 p^{\prime}, q=2 q^{\prime}+1, r=2 r^{\prime}+1:$ as $(f, g, h)=0$ if f is a cocycle.
3) $p=2 p^{\prime}+1, q=2 q^{\prime}, r=2 r^{\prime}+1:$ as $(f, g, h)=0$ if g is a cocycle.
4) $p=2 p^{\prime}+1, q=2 q^{\prime}+1, r=2 r^{\prime}: a s(f, g, h)=0$ if h is a cocycle.

Associativity on classes : a scheme of proof

For Koszul cochains f, g and h, we define their associator

$$
\operatorname{as}(f, g, h)=\left(f \breve{K}^{\smile} g\right)_{K} h-f \breve{K}^{\smile}\left(g_{K} h\right) .
$$

1) If $\nu(p+q+r)=\nu(p)+\nu(q)+\nu(r)$, then $\operatorname{as}(f, g, h)=0$.
2) $p=2 p^{\prime}, q=2 q^{\prime}+1, r=2 r^{\prime}+1: a s(f, g, h)=0$ if f is a cocycle.
3) $p=2 p^{\prime}+1, q=2 q^{\prime}, r=2 r^{\prime}+1: a s(f, g, h)=0$ if g is a cocycle.
4) $p=2 p^{\prime}+1, q=2 q^{\prime}+1, r=2 r^{\prime}: a s(f, g, h)=0$ if h is a cocycle.
5) $p=2 p^{\prime}+1, q=2 q^{\prime}+1, r=2 r^{\prime}+1: a s(f, g, h)=0$ is always a coboundary.

A non-associative example at the cochain level

A is the generic AS-regular algebra of global dimension 3, cubic, of type A, defined by complex parameters a, b and c.

A non-associative example at the cochain level

A is the generic AS-regular algebra of global dimension 3, cubic, of type A, defined by complex parameters a, b and c.
A is defined by two generators x and y and two cubic relations $r_{1}=0$ and $r_{2}=0$ where

A non-associative example at the cochain level

A is the generic AS-regular algebra of global dimension 3, cubic, of type A, defined by complex parameters a, b and c.
A is defined by two generators x and y and two cubic relations $r_{1}=0$ and $r_{2}=0$ where

$$
r_{1}=a y^{2} x+b y x y+a x y^{2}+c x^{3}, r_{2}=a x^{2} y+b x y x+a y x^{2}+c y^{3} .
$$

A non-associative example at the cochain level

A is the generic AS-regular algebra of global dimension 3, cubic, of type A, defined by complex parameters a, b and c.
A is defined by two generators x and y and two cubic relations $r_{1}=0$ and $r_{2}=0$ where

$$
r_{1}=a y^{2} x+b y x y+a x y^{2}+c x^{3}, r_{2}=a x^{2} y+b x y x+a y x^{2}+c y^{3}
$$

We know that $W_{4}=\mathbb{C} w$, where $w=x r_{1}+y r_{2}$.

A non-associative example at the cochain level

A is the generic AS-regular algebra of global dimension 3, cubic, of type A, defined by complex parameters a, b and c.
A is defined by two generators x and y and two cubic relations $r_{1}=0$ and $r_{2}=0$ where

$$
r_{1}=a y^{2} x+b y x y+a x y^{2}+c x^{3}, r_{2}=a x^{2} y+b x y x+a y x^{2}+c y^{3}
$$

We know that $W_{4}=\mathbb{C} w$, where $w=x r_{1}+y r_{2}$.
$f, g, h: V \rightarrow A$ are the Koszul 1-cochains defined by $f(x)=g(x)=x$ and $h(x)=1$ for $x \in V$. We are in Case 5 of the previous proof.

A non-associative example at the cochain level

A is the generic AS-regular algebra of global dimension 3, cubic, of type A, defined by complex parameters a, b and c.
A is defined by two generators x and y and two cubic relations $r_{1}=0$ and $r_{2}=0$ where

$$
r_{1}=a y^{2} x+b y x y+a x y^{2}+c x^{3}, r_{2}=a x^{2} y+b x y x+a y x^{2}+c y^{3}
$$

We know that $W_{4}=\mathbb{C} w$, where $w=x r_{1}+y r_{2}$.
$f, g, h: V \rightarrow A$ are the Koszul 1-cochains defined by $f(x)=g(x)=x$ and $h(x)=1$ for $x \in V$. We are in Case 5 of the previous proof.

Then as $(f, g, h)(w)=(a-b)(x y-y x)(x-y)$ is not zero in A.

Koszul calculus for N-homogeneous algebras

(1) Koszul complex for N -homogeneous algebras
(2) Koszul products
(3) Koszul calculus

4 Fundamental formulas of Koszul calculus
(5) Higher Koszul calculus

The fundamental 1-class

The Koszul 1-cocycles $f: V \rightarrow M$ are linear maps satisfying

The fundamental 1-class

The Koszul 1-cocycles $f: V \rightarrow M$ are linear maps satisfying

$$
\sum_{0 \leq i \leq N-1} x_{1} \ldots x_{i} f\left(x_{i+1}\right) x_{i+2} \ldots x_{N}=0
$$

for any $x_{1} \ldots x_{N}$ in R.

The fundamental 1-class

The Koszul 1-cocycles $f: V \rightarrow M$ are linear maps satisfying

$$
\sum_{0 \leq i \leq N-1} x_{1} \ldots x_{i} f\left(x_{i+1}\right) x_{i+2} \ldots x_{N}=0
$$

for any $x_{1} \ldots x_{N}$ in R.
Then f extends to a derivation $D_{f}: A \rightarrow M$. And conversely.

The fundamental 1-class

The Koszul 1-cocycles $f: V \rightarrow M$ are linear maps satisfying

$$
\sum_{0 \leq i \leq N-1} x_{1} \ldots x_{i} f\left(x_{i+1}\right) x_{i+2} \ldots x_{N}=0
$$

for any $x_{1} \ldots x_{N}$ in R.
Then f extends to a derivation $D_{f}: A \rightarrow M$. And conversely.
The Euler derivation $D: A \rightarrow A$ defined by $D(a)=p a$ if $a \in A_{p}$ restricts to a Koszul 1-cocycle $e_{A}: V \rightarrow A, x \mapsto x$.

The fundamental 1-class

The Koszul 1-cocycles $f: V \rightarrow M$ are linear maps satisfying

$$
\sum_{0 \leq i \leq N-1} x_{1} \ldots x_{i} f\left(x_{i+1}\right) x_{i+2} \ldots x_{N}=0
$$

for any $x_{1} \ldots x_{N}$ in R.
Then f extends to a derivation $D_{f}: A \rightarrow M$. And conversely.
The Euler derivation $D: A \rightarrow A$ defined by $D(a)=$ pa if $a \in A_{p}$ restricts to a Koszul 1-cocycle $e_{A}: V \rightarrow A, x \mapsto x$.

If $V \neq 0$, the class \bar{e}_{A} is not zero and is called the fundamental 1-class of A.

The fundamental formulas

For a p-cochain $f: W_{\nu(p)} \rightarrow P$ and a q-cochain $g: W_{\nu(q)} \rightarrow Q$, we define their Koszul cup bracket when P or Q is equal to A, by

$$
[f, g]_{\breve{K}}=f \breve{K} g-(-1)^{p q} g \breve{K}_{\breve{\prime}} f .
$$

The fundamental formulas

For a p-cochain $f: W_{\nu(p)} \rightarrow P$ and a q-cochain $g: W_{\nu(q)} \rightarrow Q$, we define their Koszul cup bracket when P or Q is equal to A, by

$$
[f, g]_{\breve{K}}=f \breve{K} g-(-1)^{p q} g \breve{K}_{\breve{\prime}} f .
$$

Then for any Koszul p-cochain $f: W_{\nu(p)} \rightarrow M$, we have

The fundamental formulas

For a p-cochain $f: W_{\nu(p)} \rightarrow P$ and a q-cochain $g: W_{\nu(q)} \rightarrow Q$, we define their Koszul cup bracket when P or Q is equal to A, by

$$
[f, g]_{\breve{K}}=f \breve{K} g-(-1)^{p q} g \breve{K}^{-} f .
$$

Then for any Koszul p-cochain $f: W_{\nu(p)} \rightarrow M$, we have
$\left[e_{A}, f\right]_{\breve{\kappa}}=-b_{K}(f)$ if p is even,
$\left[e_{A}, f\right]_{\bar{K}}=(1-N) b_{K}(f)$ if p is odd.

The fundamental formulas

For a p-cochain $f: W_{\nu(p)} \rightarrow P$ and a q-cochain $g: W_{\nu(q)} \rightarrow Q$, we define their Koszul cup bracket when P or Q is equal to A, by

$$
[f, g]_{\breve{K}}=f \breve{K} g-(-1)^{p q} g \breve{K}^{-} f .
$$

Then for any Koszul p-cochain $f: W_{\nu(p)} \rightarrow M$, we have
$\left[e_{A}, f\right]_{\breve{K}}=-b_{K}(f)$ if p is even,
$\left[e_{A}, f\right]_{\bar{K}}=(1-N) b_{K}(f)$ if p is odd.
Similarly for any Koszul q-chain $z \in M \otimes W_{\nu(q)}$, we have

The fundamental formulas

For a p-cochain $f: W_{\nu(p)} \rightarrow P$ and a q-cochain $g: W_{\nu(q)} \rightarrow Q$, we define their Koszul cup bracket when P or Q is equal to A, by

$$
[f, g]_{\breve{K}}=f \breve{K} g-(-1)^{p q} g \breve{K}^{-} f .
$$

Then for any Koszul p-cochain $f: W_{\nu(p)} \rightarrow M$, we have
$\left[e_{A}, f\right]_{\breve{K}}=-b_{K}(f)$ if p is even,
$\left[e_{A}, f\right]_{\bar{K}}=(1-N) b_{K}(f)$ if p is odd.
Similarly for any Koszul q-chain $z \in M \otimes W_{\nu(q)}$, we have
$\left[e_{A}, z\right]_{\overparen{K}}=-b_{K}(z)$ if q is odd,
$\left[e_{A}, z\right]_{\widehat{K}}=(1-N) b_{K}(z)$ if q is even.

Koszul calculus for N-homogeneous algebras

(1) Koszul complex for N -homogeneous algebras
(2) Koszul products
(3) Koszul calculus
(4) Fundamental formulas of Koszul calculus
(5) Higher Koszul calculus

Higher Koszul (co)homology

From $e_{A} \breve{K} e_{A}=0$, we draw $\bar{e}_{A} \breve{K} \bar{e}_{A}=0$. Therefore

Higher Koszul (co)homology

From $e_{A} \breve{K} e_{A}=0$, we draw $\bar{e}_{A} \breve{K} \bar{e}_{A}=0$. Therefore

$$
\bar{e}_{A} \breve{K}^{\smile}-: H K^{p}(A, M) \rightarrow H^{p+1}(A, M)
$$

Higher Koszul (co)homology

From $e_{A} \breve{K} e_{A}=0$, we draw $\bar{e}_{A} \breve{K} \bar{e}_{A}=0$. Therefore

$$
\begin{aligned}
& \bar{e}_{A}^{A_{K}}-: H K^{p}(A, M) \rightarrow H^{p+1}(A, M) \\
& \bar{e}_{A \overparen{K}}-: H K_{q}(A, M) \rightarrow H K_{q-1}(A, M)
\end{aligned}
$$

Higher Koszul (co)homology

From $e_{A} \breve{K} e_{A}=0$, we draw $\bar{e}_{A} \breve{K} \bar{e}_{A}=0$. Therefore

$$
\begin{aligned}
& \bar{e}_{A}^{A_{K}}-: H K^{p}(A, M) \rightarrow H^{p+1}(A, M) \\
& \bar{e}_{A \overparen{K}}-: H K_{q}(A, M) \rightarrow H K_{q-1}(A, M)
\end{aligned}
$$

are differentials, defining higher (co)homology spaces

Higher Koszul (co)homology

From $e_{A} \breve{K} e_{A}=0$, we draw $\bar{e}_{A} \breve{K} \bar{e}_{A}=0$. Therefore

$$
\begin{aligned}
& \bar{e}_{A} \breve{K}^{\smile}-: H K^{p}(A, M) \rightarrow H K^{p+1}(A, M) \\
& \bar{e}_{A \overparen{K}}-: H K_{q}(A, M) \rightarrow H K_{q-1}(A, M)
\end{aligned}
$$

are differentials, defining higher (co)homology spaces

$$
H K_{h i}^{p}(A, M) \text { and } H K_{q}^{h i}(A, M)
$$

Higher Koszul (co)homology

From $e_{A} \breve{K}^{\smile} e_{A}=0$, we draw $\bar{e}_{A} \breve{K} \bar{e}_{A}=0$. Therefore

$$
\begin{aligned}
& \bar{e}_{A}^{A_{K}}-: H K^{p}(A, M) \rightarrow H^{p+1}(A, M) \\
& \bar{e}_{A \overparen{K}}-: H K_{q}(A, M) \rightarrow H K_{q-1}(A, M)
\end{aligned}
$$

are differentials, defining higher (co)homology spaces

$$
H K_{h i}^{p}(A, M) \text { and } H K_{q}^{h i}(A, M)
$$

Then the higher Koszul calculus consists of the graded associative algebra $\left(H K_{h i}^{\bullet}(A),{ }_{K}\right)$

Higher Koszul (co)homology

From $e_{A} \breve{K} e_{A}=0$, we draw $\bar{e}_{A} \breve{K} \bar{e}_{A}=0$. Therefore

$$
\begin{aligned}
& \bar{e}_{A}^{A_{K}}-: H K^{p}(A, M) \rightarrow H^{p+1}(A, M) \\
& \bar{e}_{A \overparen{K}}-: H K_{q}(A, M) \rightarrow H K_{q-1}(A, M)
\end{aligned}
$$

are differentials, defining higher (co)homology spaces

$$
H K_{h i}^{p}(A, M) \text { and } H K_{q}^{h i}(A, M)
$$

Then the higher Koszul calculus consists of the graded associative algebra $\left(H K_{h i}^{\bullet}(A),{ }_{K}\right)$
and of the graded $H K_{h i}^{\bullet}(A)$-bimodules $\left(H K_{h i}^{\bullet}(A, M)\right.$ and $\left(H K_{\bullet}^{h i}(A, M)\right.$ for actions \breve{K} and $\overparen{K}^{〔}$ respectively.

A noncommutative Poincare's Lemma for graded algebras

Here A is any connected \mathbb{N}-graded k-algebra, D is its Euler derivation. The Rinehart-Goodwillie identity

A noncommutative Poincare's Lemma for graded algebras

Here A is any connected \mathbb{N}-graded k-algebra, D is its Euler derivation. The Rinehart-Goodwillie identity

$$
[H(D \frown-), H(B)]_{c}=H\left(L_{D}\right)
$$

A noncommutative Poincare's Lemma for graded algebras

Here A is any connected \mathbb{N}-graded k-algebra, D is its Euler derivation. The Rinehart-Goodwillie identity

$$
[H(D \frown-), H(B)]_{c}=H\left(L_{D}\right)
$$

on $H H_{\bullet}(A)$ shows that, whenever $\operatorname{char}(k)=0, H H_{0}^{h i}(A) \cong k$ and $H H_{p}^{h i}(A) \cong 0$ if $p>0$.

A noncommutative Poincaré's Lemma for graded algebras

Here A is any connected \mathbb{N}-graded k-algebra, D is its Euler derivation. The Rinehart-Goodwillie identity

$$
[H(D \frown-), H(B)]_{c}=H\left(L_{D}\right)
$$

on $H H_{\bullet}(A)$ shows that, whenever $\operatorname{char}(k)=0, H H_{0}^{h i}(A) \cong k$ and $H H_{p}^{h i}(A) \cong 0$ if $p>0$.
Consequently, we have the following theorem.

A noncommutative Poincaré's Lemma for graded algebras

Here A is any connected \mathbb{N}-graded k-algebra, D is its Euler derivation. The Rinehart-Goodwillie identity

$$
[H(D \frown-), H(B)]_{c}=H\left(L_{D}\right)
$$

on $H H_{\bullet}(A)$ shows that, whenever $\operatorname{char}(k)=0, H H_{0}^{h i}(A) \cong k$ and $H H_{p}^{h i}(A) \cong 0$ if $p>0$.
Consequently, we have the following theorem.
Theorem (BLS). Assume $\operatorname{char}(k)=0$. If A is quadratic and Koszul, then

A noncommutative Poincare's Lemma for graded algebras

Here A is any connected \mathbb{N}-graded k-algebra, D is its Euler derivation.
The Rinehart-Goodwillie identity

$$
[H(D \frown-), H(B)]_{c}=H\left(L_{D}\right)
$$

on $H H_{\bullet}(A)$ shows that, whenever $\operatorname{char}(k)=0, H H_{0}^{h i}(A) \cong k$ and $H H_{p}^{h i}(A) \cong 0$ if $p>0$.
Consequently, we have the following theorem.
Theorem (BLS). Assume $\operatorname{char}(k)=0$. If A is quadratic and Koszul, then $H K_{0}^{h i}(A) \cong k$ and $H K_{p}^{h i}(A) \cong 0$ if $p>0$.

A noncommutative Poincaré's Lemma for graded algebras

Here A is any connected \mathbb{N}-graded k-algebra, D is its Euler derivation.
The Rinehart-Goodwillie identity

$$
[H(D \frown-), H(B)]_{c}=H\left(L_{D}\right)
$$

on $H H_{\bullet}(A)$ shows that, whenever $\operatorname{char}(k)=0, H H_{0}^{h i}(A) \cong k$ and $H H_{p}^{h i}(A) \cong 0$ if $p>0$.
Consequently, we have the following theorem.
Theorem (BLS). Assume $\operatorname{char}(k)=0$. If A is quadratic and Koszul, then $H K_{0}^{h i}(A) \cong k$ and $H K_{p}^{h i}(A) \cong 0$ if $p>0$.

Question : is this theorem still valid when $N>2$?

Why is this quadratic theorem important?

The quadratic algebra $A=k\langle x, y\rangle /\left\langle x^{2}, y^{2}-x y\right\rangle$ is not Koszul and we have proved that $H K_{2}^{h i}(A) \neq 0$ (actually 2-dimensional).

Why is this quadratic theorem important?

The quadratic algebra $A=k\langle x, y\rangle /\left\langle x^{2}, y^{2}-x y\right\rangle$ is not Koszul and we have proved that $H K_{2}^{h i}(A) \neq 0$ (actually 2-dimensional).

Then for this quadratic algebra A, the higher Koszul homology provides more information on A than the higher Hochschild homology.

Why is this quadratic theorem important?

The quadratic algebra $A=k\langle x, y\rangle /\left\langle x^{2}, y^{2}-x y\right\rangle$ is not Koszul and we have proved that $H K_{2}^{h i}(A) \neq 0$ (actually 2-dimensional).

Then for this quadratic algebra A, the higher Koszul homology provides more information on A than the higher Hochschild homology.

We conjecture that this fact holds for any quadratic algebra, and why not, for any N-homogeneous algebra.

Why is this quadratic theorem important?

The quadratic algebra $A=k\langle x, y\rangle /\left\langle x^{2}, y^{2}-x y\right\rangle$ is not Koszul and we have proved that $H K_{2}^{h i}(A) \neq 0$ (actually 2-dimensional).

Then for this quadratic algebra A, the higher Koszul homology provides more information on A than the higher Hochschild homology.

We conjecture that this fact holds for any quadratic algebra, and why not, for any N-homogeneous algebra.

The same questions can be asked about the following theorem.

Why is this quadratic theorem important?

The quadratic algebra $A=k\langle x, y\rangle /\left\langle x^{2}, y^{2}-x y\right\rangle$ is not Koszul and we have proved that $H K_{2}^{h i}(A) \neq 0$ (actually 2-dimensional).

Then for this quadratic algebra A, the higher Koszul homology provides more information on A than the higher Hochschild homology.

We conjecture that this fact holds for any quadratic algebra, and why not, for any N-homogeneous algebra.

The same questions can be asked about the following theorem.
Theorem (BLS). Assume $\operatorname{char}(k)=0$. If A is quadratic, Koszul and n-Calabi-Yau, then $H K_{h i}^{n}(A) \cong k$ and $H K_{h i}^{p}(A) \cong 0$ if $p \neq n$.

