Liste de publications
- "On the Role of the Viscosity Parameters in the Large Time Asymptotics of 2D Micropolar Flows". Soumis pour publication. .
L. Brandolese, A.V. Busuioc, D. Iftimie and C. F. Perusato. - "Asymptotic profiles for the linear 3D micropolar system and applications to the large-time behavior of the nonlinear problem". Travail en cours.
L. Brandolese, P. Braz e Silva, A.V. Busuioc , D. Iftimie and C. F. Perusato. - The incompressible α-Euler equations in the exterior of a vanishing disk.
A. V. Busuioc, D. Iftimie, M. Lopes Filho et H. Nussenzveig Lopes, Indiana University Mathematics Journal 73, no. 2 (2024) 691-721. - In memoriam: Geneviève Raugel.
A.V. Busuioc, T. Gallay, R. Joly, Journal of Dynamics and Differential Equations volume 34, pages 2585–2592 (2022). - The limit α → 0 of the α-Euler equations in the half plane with no-slip boundary conditions and vortex sheet initial data.
A. V. Busuioc, D. Iftimie, M. Lopes Filho et H. Nussenzveig Lopes. SIAM Journal on Mathematical Analysis 52 (2020), no. 5, 5257–5286. - From second grade fluids to the Navier-Stokes equations.
A. V. Busuioc. J. Differential Equations 265 (2018), no. 3, 979–999. - Weak solutions for the α–Euler equations and convergence to Euler.
A. V. Busuioc et D. Iftimie. Nonlinearity 30 (2017), 4534–4557. - Uniform time of existence for the alpha Euler equations.
A. V. Busuioc, D. Iftimie, M. Lopes Filho et H. Nussenzveig Lopes. J. Functional Analysis, 271 (2016), no. 5, 1341–1375. - The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation.
A. V. Busuioc, D. Iftimie, S. Ciuperca et L. Palade. J. Dyn. Diff. Eqns. 26 (2014), no. 2, 217–241. - Incompressible Euler as a limit of complex fluid models with Navier boundary conditions
A. V. Busuioc, D. Iftimie, M. Lopes Filho et H. Nussenzveig Lopes. Journal of Diff. Eqns. 252 (2012), no. 1, 624–640. - On the large time behavior of solutions of the alpha Navier-Stokes equations.
A. V. Busuioc. Physica D: Nonlinear Phenomena 238 (2009), no. 23-24, 2261–2272. - On steady third grade fluids equations.
A. V. Busuioc, D. Iftimie et M. Paicu. Nonlinearity 21 (2008), no. 7, 1621–1635. - A non-Newtonian fluid with Navier boundary conditions.
A. V. Busuioc et D. Iftimie. Journal of Dynamics and Differential Equations 18 (2006), no. 2, 357–379. - Some remarks on a certain class of axisymmetric fluids of differential type.
A. V. Busuioc et T. S. Ratiu. Physica D: Nonlinear Phenomena 191 (2004), no. 1-2, 106–120. - Global existence and uniqueness of solutions for the equations of third grade fluids.
A. V. Busuioc et D. Iftimie. Int. J. Non-Linear Mech. 39 (2004), no. 1, 1–12. - A fluid problem with Navier-slip boundary conditions.
A. V. Busuioc et T. S. Ratiu. Complementarity, duality and symmetry in nonlinear mechanics, 241–254, Adv. Mech. Math., 6, Kluwer Acad. Publ., Boston, MA, 2004. - On the flow of a Bingham fluid passing through an electric field.
A. V. Busuioc et D. Cioranescu. Internat. J. Non-Linear Mech. 38 (2003), no. 3, 287–304. - The second grade fluid and averaged Euler equations with Navier-slip boundary conditions.
A. V. Busuioc et T. S. Ratiu. Nonlinearity 16 (2003), no. 3, 1119–1149. - The regularity of bidimensional solutions of the third grade fluids equations.
A. V. Busuioc. Math. Comput. Modelling 35 (2002), no. 7-8, 733–742. - On second grade fluids with vanishing viscosity.
A. V. Busuioc. Port. Math. (N.S.) 59 (2002), no. 1, 47–65. - Sur les équations α Navier-Stokes dans un ouvert borné.
A. V. Busuioc. C. R. Math. Acad. Sci. Paris 334 (2002), no. 9, 823–826. - On a class of electrorheological fluids.
A. V. Busuioc et D. Cioranescu. Ricerche Mat. 49 (2000), suppl., 29–60. - Existence et unicité globale des solutions pour les équations des fluides de grade 3.
A. V. Busuioc et D. Iftimie. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 8, 741–744. - On second grade fluids with vanishing viscosity.
A. V. Busuioc. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 12, 1241–1246. - Sur une classe de fluides électrorhéologiques.
A. V. Busuioc et D. Cioranescu. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 5, 449–454.
Thèse de doctorat
- "Sur quelques problèmes en mécanique des fluides non-newtoniens", directrice de thèse Doina Cioranescu. Laboratoire JLL, Université Pierre et Marie Curie. Janvier 2000.
Habilitation à diriger des recherches
- "Un regard mathématique sur les fluides non-newtoniens". Université Jean Monnet Saint-Étienne, Janvier 2014.
Jury HdR:
-Didier Bresch, Université de Savoie Mont Blanc (rapporteur)
-Doina Cioranescu, Université Paris 6
-Andro Mikelic, Université Lyon1
-Helena Nussenzveig Lopes, Université Fédérale de Rio de Janeiro
-Grigory Panasenko, Université Jean Monnet
-Tudor Ratiu, Ecole Polytechnique Fédérale de Lausanne (rapporteur)
-Geneviève Raugel, Université d'Orsay (présidente du jury)
-Maria Schonbek, Université de Santa Cruz (rapporteur)