Frederic CHARDARD's web page

I am maître de conférences (lecturer) at University Jean Monnet and I do my research at Saint-Étienne campus of Camille Jordan Institute.
Photo of Frederic Chardard


Office address

Frédéric Chardard (Office B 101 B)
Département de mathématiques
Institut Camille Jordan
Université Jean Monnet
23, rue du docteur Paul Michelon
42023 Saint-Étienne

Office phone

33 + (0) 4 77 48 15 38


33 + (0) 4 77 48 15 80

Cell phone

+33 (0) 6 74 40 29 32


firstname.lastname at

Curriculum Vitae

Long version

  • Born in 1982.


  • 2005-2009: PhD at CMLA ( ENS Cachan ) on the stability of solitary waves. PhD advisor: Frédéric DIAS .
  • 2005: Master of Science on Partial Differential Equations and Scientific Calculus at Paris-Sud XI Orsay.
  • 2003: Bachelor of science on Mathematics (Paris-Sud XI Orsay).
  • 2000: High school diploma (Baccalauréat scientifique spécialité Mathématiques).


  • Fall 2012-: Maître de conférences (lecturer) at University Jean Monnet (Saint-Étienne)
  • 2009-2012: Agrégé-Préparateur at ENS Lyon.
  • 2006-2009: PhD Grant and Teaching Assistant (Allocataire-moniteur).
  • 2002-2006: Pupil of ENS Cachan.


  • 2009-2012: Tutorials on Differential Calculus, Topology, Numerical Analysis. Short course on Differential Geometry.
  • 2006-2009: Tutorials on Finte Differences/Finte Elements/Finite Volumes and Numerical Linear Algebra.
  • 2003-2006: 120 hours of oral interrogations.

PhD thesis

I defended on Friday, May 15th, 2009 at ENS Cachan.

PhD dissertation

Abstract of the thesis

Stability of solitary waves

This thesis is devoted to the stability of solitary waves, and more precisely to the applications of the Maslov index to the spectral stability problem. We show how the stability problem can be related to a family of linear Hamiltonian ODE. It is then possible to define a Maslov index for periodic waves and solitary waves. We compute the limit, when it exists, of the Maslov index of a sequence of periodic waves which converges to a solitary wave. We describe how exterior algebra can be used to compute the Maslov index, both in the periodic and solitary wave cases. We then use this framework for solitary waves and periodic waves arising in the Kawahara equation and for solitary waves arising in a longwave-shortwave interaction system. Lastly, we deal with the stability of stationary solutions of a model for flows over a non-uniform bottom by using a slightly different method.


Thomas J. BRIDGES, Professor, Surrey, United Kingdom
Frédéric DIAS, Professor, ENS Cachan
Christopher K.R.T. JONES, Professor, University of North Carolina at Chapel Hill, USA
Juan-Pablo ORTEGA, Chargé de recherches, CNRS
Jean-Claude SAUT, Professor, Paris XI
Nikolay TZVETKOV, Professor, Lille I


É.Canon, F.Chardard, G.Panasenko, O.Štikonienė, Numerical solution of viscous flows in a network of thin tubes: asymptotics and discretization in the cross-section, preprint hal-02906473.

É.Canon, F.Chardard, G.Panasenko, O.Štikonienė, Numerical solution of the viscous flows in a network of thin tubes: equations on the graph, submitted to Journal of Computational Physics, preprint hal-02407080.

F.Chardard, A.Elbert, G.Panasenko. Asymptotic analysis of the thin elastic plate-viscoelastic layer interaction, Multiscale Modeling and Simulation 16 1258–1282 (2018).
PDF, doi:10.1137/17M1138662

T.J.Bridges, F.Chardard. Transversality of homoclinic orbits, the Maslov index, and the symplectic Evans function, Nonlinearity 28 77-102 (2015).
PDF, doi:10.1088/0951-7715/28/1/77

F.Chardard, F.Dias, T.J.Bridges. Computing the Maslov index of solitary waves. Part 2:Phase space with dimension greater than four, Physica D 240 1334-1344 (2011).
PDF doi:10.1016/j.physd.2011.05.014

F.Chardard, F.Dias, H.-Y. Nguyen, J.-M. Vanden-Broeck. Stability of some stationary solutions to the forced KdV equation with one or two bumps, Journal of Engineering Mathematics 70 175-189 (2011).
PDF doi:10.1007/s10665-010-9424-6

F.Chardard, F.Dias, T.J.Bridges. On the Maslov index of multi-pulse orbits, R. Soc. Lond. Proc. Ser. A 465  2897-2910 (2009).
PDF, doi:10.1098/rspa.2009.0155

F.Chardard, F.Dias, T.J.Bridges. Computing the Maslov index of solitary waves. Part 1: Hamiltonian systems on a 4−dimensional phase space, Physica D 238  1841-1867 (2009).
See "Computational aspects of the Maslov index of solitary waves" for the long version of this article.

F.Chardard. Maslov index for solitary waves obtained as a limit of the Maslov index for periodic waves, C. R. Acad. Sci. Paris, Ser. I 345/12  689-694 (2007).
PDF, doi:10.1016/j.crma.2007.11.003

F.Chardard, F.Dias, T.J.Bridges. Fast computation of the Maslov Index for hyperbolic linear systems with periodic coefficients, Journal of Physics A : Mathematical and General 39  14545-14557 (2006)
PDF, doi:10.1088/0305-4470/39/47/002


F.Chardard, F.Dias, T.J.Bridges. Computational aspects of the Maslov index of solitary waves, hal-00383888.

Google Scholar


Un soliton